Perfect computational equivalence between quantum Turing machines and finitely generated uniform quantum circuit families

Perfect computational equivalence between quantum Turing machines and finitely generated uniform... In order to establish the computational equivalence between quantum Turing machines (QTMs) and quantum circuit families (QCFs) using Yao’s quantum circuit simulation of QTMs, we previously introduced the class of uniform QCFs based on an infinite set of elementary gates, which has been shown to be computationally equivalent to the polynomial-time QTMs (with appropriate restriction of amplitudes) up to bounded error simulation. This result implies that the complexity class BQP introduced by Bernstein and Vazirani for QTMs equals its counterpart for uniform QCFs. However, the complexity classes ZQP and EQP for QTMs do not appear to equal their counterparts for uniform QCFs. In this paper, we introduce a subclass of uniform QCFs, the finitely generated uniform QCFs, based on finite number of elementary gates and show that the class of finitely generated uniform QCFs is perfectly equivalent to the class of polynomial-time QTMs; they can exactly simulate each other. This naturally implies that BQP as well as ZQP and EQP equal the corresponding complexity classes of the finitely generated uniform QCFs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Perfect computational equivalence between quantum Turing machines and finitely generated uniform quantum circuit families

Loading next page...
 
/lp/springer_journal/perfect-computational-equivalence-between-quantum-turing-machines-and-MiIISsYfUx
Publisher
Springer US
Copyright
Copyright © 2009 by The Author(s)
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-008-0091-8
Publisher site
See Article on Publisher Site

References

  • Quantum complexity theory
    Bernstein, E.; Vazirani, U.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial