Perfect computational equivalence between quantum Turing machines and finitely generated uniform quantum circuit families

Perfect computational equivalence between quantum Turing machines and finitely generated uniform... In order to establish the computational equivalence between quantum Turing machines (QTMs) and quantum circuit families (QCFs) using Yao’s quantum circuit simulation of QTMs, we previously introduced the class of uniform QCFs based on an infinite set of elementary gates, which has been shown to be computationally equivalent to the polynomial-time QTMs (with appropriate restriction of amplitudes) up to bounded error simulation. This result implies that the complexity class BQP introduced by Bernstein and Vazirani for QTMs equals its counterpart for uniform QCFs. However, the complexity classes ZQP and EQP for QTMs do not appear to equal their counterparts for uniform QCFs. In this paper, we introduce a subclass of uniform QCFs, the finitely generated uniform QCFs, based on finite number of elementary gates and show that the class of finitely generated uniform QCFs is perfectly equivalent to the class of polynomial-time QTMs; they can exactly simulate each other. This naturally implies that BQP as well as ZQP and EQP equal the corresponding complexity classes of the finitely generated uniform QCFs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Perfect computational equivalence between quantum Turing machines and finitely generated uniform quantum circuit families

Loading next page...
 
/lp/springer_journal/perfect-computational-equivalence-between-quantum-turing-machines-and-MiIISsYfUx
Publisher
Springer Journals
Copyright
Copyright © 2009 by The Author(s)
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-008-0091-8
Publisher site
See Article on Publisher Site

Abstract

In order to establish the computational equivalence between quantum Turing machines (QTMs) and quantum circuit families (QCFs) using Yao’s quantum circuit simulation of QTMs, we previously introduced the class of uniform QCFs based on an infinite set of elementary gates, which has been shown to be computationally equivalent to the polynomial-time QTMs (with appropriate restriction of amplitudes) up to bounded error simulation. This result implies that the complexity class BQP introduced by Bernstein and Vazirani for QTMs equals its counterpart for uniform QCFs. However, the complexity classes ZQP and EQP for QTMs do not appear to equal their counterparts for uniform QCFs. In this paper, we introduce a subclass of uniform QCFs, the finitely generated uniform QCFs, based on finite number of elementary gates and show that the class of finitely generated uniform QCFs is perfectly equivalent to the class of polynomial-time QTMs; they can exactly simulate each other. This naturally implies that BQP as well as ZQP and EQP equal the corresponding complexity classes of the finitely generated uniform QCFs.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jan 16, 2009

References

  • Quantum complexity theory
    Bernstein, E.; Vazirani, U.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off