Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Perceptual evaluation of maneuvering motion illusion for virtual pedestrians

Perceptual evaluation of maneuvering motion illusion for virtual pedestrians Crowd simulations span a wide spectrum of application domains, most notably video games, evacuation scenarios, and the movie industry. However, it is not obligatory that all virtual populace applications have the primary objective of realistic simulation. In most instances, it is necessary and sufficient that viewers perceive the crowd as plausible. Even for a crowd consisting of agents navigating on linear trajectories without any maneuvers, visual motion illusion elicited by these trajectories might appear to be a natural consequence, causing them to be perceived as wriggling rather than straight. In this respect, we evaluate in this study whether simulated 3D human agents walking with constant, collision-free velocities, induce such a maneuvering motion illusion, aiming toward an efficient real-time crowd simulation. For this purpose, we recorded videos of virtual human crowds with different parameter combinations, such as the agent walking speed, crowd density, camera tilt angle, and camera distance. These videos were watched by human subjects who were instructed to mark the virtual agents who they thought had changed their gait directions. The analyzed results revealed that participants claimed the presence of maneuvering virtual agents in the videos, even though there were none in any of them. Spatial grouping of the markings highlighted that the participants mainly focused on the central area of the simulation environment, and spatiotemporal analysis of the click data also showed stronger evidence to such an illusion (see accompanying video). Furthermore, we found that all of the referred parameters have statistically significant main effects on the number of marked agents per watched video. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Visual Computer Springer Journals

Perceptual evaluation of maneuvering motion illusion for virtual pedestrians

Loading next page...
 
/lp/springer_journal/perceptual-evaluation-of-maneuvering-motion-illusion-for-virtual-CxuZ4Y0aBP

References (17)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Computer Science; Computer Graphics; Computer Science, general; Artificial Intelligence (incl. Robotics); Image Processing and Computer Vision
ISSN
0178-2789
eISSN
1432-2315
DOI
10.1007/s00371-018-1557-z
Publisher site
See Article on Publisher Site

Abstract

Crowd simulations span a wide spectrum of application domains, most notably video games, evacuation scenarios, and the movie industry. However, it is not obligatory that all virtual populace applications have the primary objective of realistic simulation. In most instances, it is necessary and sufficient that viewers perceive the crowd as plausible. Even for a crowd consisting of agents navigating on linear trajectories without any maneuvers, visual motion illusion elicited by these trajectories might appear to be a natural consequence, causing them to be perceived as wriggling rather than straight. In this respect, we evaluate in this study whether simulated 3D human agents walking with constant, collision-free velocities, induce such a maneuvering motion illusion, aiming toward an efficient real-time crowd simulation. For this purpose, we recorded videos of virtual human crowds with different parameter combinations, such as the agent walking speed, crowd density, camera tilt angle, and camera distance. These videos were watched by human subjects who were instructed to mark the virtual agents who they thought had changed their gait directions. The analyzed results revealed that participants claimed the presence of maneuvering virtual agents in the videos, even though there were none in any of them. Spatial grouping of the markings highlighted that the participants mainly focused on the central area of the simulation environment, and spatiotemporal analysis of the click data also showed stronger evidence to such an illusion (see accompanying video). Furthermore, we found that all of the referred parameters have statistically significant main effects on the number of marked agents per watched video.

Journal

The Visual ComputerSpringer Journals

Published: May 23, 2018

There are no references for this article.