Pentaerythritol particles covered by layer-by-layer self assembled thin films with stereocomplex of isotactic poly(methyl methacrylate) and syndiotactic poly(methyl methacrylate)

Pentaerythritol particles covered by layer-by-layer self assembled thin films with stereocomplex... In this paper, we present a different approach of coating a phase change material (PCM) for a possible use in thermal energy storage. We focused on layer-by-layer coating of pentaerythritol (PE) particles, which was achieved through stereocomplex formation of isotactic (it-)poly(methyl methacrylate) (PMMA) and syndiotactic (st-)PMMA as coating materials. As a model system, a quartz crystal microbalance (QCM) was covered by PE and subsequently coated by alternated dipping into solutions of it-PMMA and st-PMMA in hexane/acetonitrile (1/9, v/v). Frequency shifts in each step were calculated using Sauerbrey’s equation and specific peaks of PE, PMMA, and PMMA stereocomplex were detected by FT-IR. The results indicate a stepwise formation of PMMA stereocomplex onto the PE substrate covering the QCM. Furthermore, PE particles were prepared by homogenization and coated by alternating submersion in solutions of it-PMMA and st-PMMA in hexane/acetonitrile (1/9, v/v). After 20 cycles resulting in 40 PMMA layers, IR measurements of the particles showed the specific peaks for PE, PMMA, and PMMA stereocomplex. SEM pictures of uncoated PE particles and of residues of the coated particles after washing out the PE by water/methanol (water/MeOH) were compared to confirm the successful coating. With this basic demonstration of the processes feasibility for the abovementioned materials, the enhanced PCMs could be developed for the use in thermal energy storage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Colloid Polymer Science Springer Journals

Pentaerythritol particles covered by layer-by-layer self assembled thin films with stereocomplex of isotactic poly(methyl methacrylate) and syndiotactic poly(methyl methacrylate)

Loading next page...
 
/lp/springer_journal/pentaerythritol-particles-covered-by-layer-by-layer-self-assembled-uf5sNSk9OP
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Chemistry; Polymer Sciences; Soft and Granular Matter, Complex Fluids and Microfluidics; Characterization and Evaluation of Materials; Physical Chemistry; Food Science; Nanotechnology and Microengineering
ISSN
0303-402X
eISSN
1435-1536
D.O.I.
10.1007/s00396-017-4133-6
Publisher site
See Article on Publisher Site

Abstract

In this paper, we present a different approach of coating a phase change material (PCM) for a possible use in thermal energy storage. We focused on layer-by-layer coating of pentaerythritol (PE) particles, which was achieved through stereocomplex formation of isotactic (it-)poly(methyl methacrylate) (PMMA) and syndiotactic (st-)PMMA as coating materials. As a model system, a quartz crystal microbalance (QCM) was covered by PE and subsequently coated by alternated dipping into solutions of it-PMMA and st-PMMA in hexane/acetonitrile (1/9, v/v). Frequency shifts in each step were calculated using Sauerbrey’s equation and specific peaks of PE, PMMA, and PMMA stereocomplex were detected by FT-IR. The results indicate a stepwise formation of PMMA stereocomplex onto the PE substrate covering the QCM. Furthermore, PE particles were prepared by homogenization and coated by alternating submersion in solutions of it-PMMA and st-PMMA in hexane/acetonitrile (1/9, v/v). After 20 cycles resulting in 40 PMMA layers, IR measurements of the particles showed the specific peaks for PE, PMMA, and PMMA stereocomplex. SEM pictures of uncoated PE particles and of residues of the coated particles after washing out the PE by water/methanol (water/MeOH) were compared to confirm the successful coating. With this basic demonstration of the processes feasibility for the abovementioned materials, the enhanced PCMs could be developed for the use in thermal energy storage.

Journal

Colloid Polymer ScienceSpringer Journals

Published: Jun 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off