Pedestrian detection based on multi-convolutional features by feature maps pruning

Pedestrian detection based on multi-convolutional features by feature maps pruning Convolutional neural network (CNN) has developed such a large network size in last few years, so reducing the storage requirement without hurting its accuracy becomes necessary. In this paper, in order to reduce the number of high dimensional feature maps in shallow layers, we propose a feature map selection method, which cuts the feature map number by correlation coefficient between kernels and finishes detection by HOG+SVM method. Firstly, we extract feature maps of shallow layers from trained CNN. Then, we merge strongly relevant feature maps and choose all maps among weakly relevant feature maps by analyzing correlation coefficient of kernels. Finally, we extract HOG features of the chosen feature maps and use SVM to complete the training and classification. The experimental results show that the proposed method can effectively prune high dimensional feature maps and stabilize or even advance the performance in pedestrian detection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Pedestrian detection based on multi-convolutional features by feature maps pruning

Loading next page...
 
/lp/springer_journal/pedestrian-detection-based-on-multi-convolutional-features-by-feature-sfBpJA0h3q
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4837-0
Publisher site
See Article on Publisher Site

Abstract

Convolutional neural network (CNN) has developed such a large network size in last few years, so reducing the storage requirement without hurting its accuracy becomes necessary. In this paper, in order to reduce the number of high dimensional feature maps in shallow layers, we propose a feature map selection method, which cuts the feature map number by correlation coefficient between kernels and finishes detection by HOG+SVM method. Firstly, we extract feature maps of shallow layers from trained CNN. Then, we merge strongly relevant feature maps and choose all maps among weakly relevant feature maps by analyzing correlation coefficient of kernels. Finally, we extract HOG features of the chosen feature maps and use SVM to complete the training and classification. The experimental results show that the proposed method can effectively prune high dimensional feature maps and stabilize or even advance the performance in pedestrian detection.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: May 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off