Pearlite Development in Commercial Hadfield Steel by Means of Isothermal Reactions

Pearlite Development in Commercial Hadfield Steel by Means of Isothermal Reactions The Fe–12Mn–1C Hadfield steel is an abrasion-resistant alloy of high technological relevance for mining and heavy machinery. This composition is susceptible to pearlite formation which is detrimental for the material’s ductility. Although its spread use, the study of pearlite formation has been preserved to laboratory conditions which cannot be transferred to industrial practices. This manuscript provides updated information about this phenomenon by constructing the time–temperature-transformation diagram of the alloy between 400 and 600 °C. The pearlitic reaction occurs above 450 °C and begins on the grain boundaries. Only 7 min is needed for the transformation to start at 550 °C, and a maximum pearlite fraction of 35% is reached after 150 min at this temperature. Results are compared with the Fe–12Mn–0.8C composition mostly found in literature. The discussion comprises the effects of carbon and manganese content on the pearlitic reaction with the support of thermodynamics calculations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Metallography, Microstructure, and Analysis Springer Journals

Pearlite Development in Commercial Hadfield Steel by Means of Isothermal Reactions

Loading next page...
 
/lp/springer_journal/pearlite-development-in-commercial-hadfield-steel-by-means-of-UE652BEQ67
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC and ASM International
Subject
Materials Science; Metallic Materials; Characterization and Evaluation of Materials; Structural Materials; Surfaces and Interfaces, Thin Films; Nanotechnology
ISSN
2192-9262
eISSN
2192-9270
D.O.I.
10.1007/s13632-017-0391-4
Publisher site
See Article on Publisher Site

Abstract

The Fe–12Mn–1C Hadfield steel is an abrasion-resistant alloy of high technological relevance for mining and heavy machinery. This composition is susceptible to pearlite formation which is detrimental for the material’s ductility. Although its spread use, the study of pearlite formation has been preserved to laboratory conditions which cannot be transferred to industrial practices. This manuscript provides updated information about this phenomenon by constructing the time–temperature-transformation diagram of the alloy between 400 and 600 °C. The pearlitic reaction occurs above 450 °C and begins on the grain boundaries. Only 7 min is needed for the transformation to start at 550 °C, and a maximum pearlite fraction of 35% is reached after 150 min at this temperature. Results are compared with the Fe–12Mn–0.8C composition mostly found in literature. The discussion comprises the effects of carbon and manganese content on the pearlitic reaction with the support of thermodynamics calculations.

Journal

Metallography, Microstructure, and AnalysisSpringer Journals

Published: Oct 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off