Patterns of RAPD markers and heavy metal concentrations in Perna viridis (L.), collected from metal-contaminated and uncontaminated coastal waters: Are they correlated with each other?

Patterns of RAPD markers and heavy metal concentrations in Perna viridis (L.), collected from... Genetic variation due to heavy metal contamination has always been an interesting topic of study. Because of the numerous contaminants being found in coastal and intertidal waters, there is always much discussion and argument as to which contaminant(s) caused the variations in the genetic structures of biomonitors. This study used a Single Primer Amplification Reaction (SPAR) technique, namely Random Amplified Polymorphic DNA (RAPD), to determine the genetic diversity of the populations of the green-lipped mussel Perna viridis collected from a metal-contaminated site at Kg. Pasir Puteh and those from four relatively uncontaminated sites (reference sites). Heavy metal levels (Cd, Cu, Pb, and Zn) were also measured in the soft tissues and byssus of the mussels from all the sites. Cluster analyses employing UPGMA based on the RAPD markers grouped the populations into two major clusters; the Bagan Tiang, Pantai Lido, Pontian, and Kg. Pasir Puteh populations were in one cluster, while the Sg. Belungkor population clustered by itself. This indicated that the genetic diversity based on bands resulting from the use of all four RAPD primers on P. viridis did not indicate its potential use as a biomarker of heavy metal pollution in coastal waters. However, based on a correlation analysis between a particular metal and a band resulting from a specific RAPD primer revealed some significant (P < 0.01) correlations between the primers and the heavy metal concentrations in the byssus and soft tissues. Thus, the correlation between a particular metal and the bands resulting from the use of a specific RAPD primer on P. viridis could be used as biomonitoring tool of heavy metal pollution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Patterns of RAPD markers and heavy metal concentrations in Perna viridis (L.), collected from metal-contaminated and uncontaminated coastal waters: Are they correlated with each other?

Loading next page...
 
/lp/springer_journal/patterns-of-rapd-markers-and-heavy-metal-concentrations-in-perna-k00Dh6Nn0o
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795407050109
Publisher site
See Article on Publisher Site

Abstract

Genetic variation due to heavy metal contamination has always been an interesting topic of study. Because of the numerous contaminants being found in coastal and intertidal waters, there is always much discussion and argument as to which contaminant(s) caused the variations in the genetic structures of biomonitors. This study used a Single Primer Amplification Reaction (SPAR) technique, namely Random Amplified Polymorphic DNA (RAPD), to determine the genetic diversity of the populations of the green-lipped mussel Perna viridis collected from a metal-contaminated site at Kg. Pasir Puteh and those from four relatively uncontaminated sites (reference sites). Heavy metal levels (Cd, Cu, Pb, and Zn) were also measured in the soft tissues and byssus of the mussels from all the sites. Cluster analyses employing UPGMA based on the RAPD markers grouped the populations into two major clusters; the Bagan Tiang, Pantai Lido, Pontian, and Kg. Pasir Puteh populations were in one cluster, while the Sg. Belungkor population clustered by itself. This indicated that the genetic diversity based on bands resulting from the use of all four RAPD primers on P. viridis did not indicate its potential use as a biomarker of heavy metal pollution in coastal waters. However, based on a correlation analysis between a particular metal and a band resulting from a specific RAPD primer revealed some significant (P < 0.01) correlations between the primers and the heavy metal concentrations in the byssus and soft tissues. Thus, the correlation between a particular metal and the bands resulting from the use of a specific RAPD primer on P. viridis could be used as biomonitoring tool of heavy metal pollution.

Journal

Russian Journal of GeneticsSpringer Journals

Published: May 24, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off