Pattern Recognition and Size Prediction of Microcalcification Based on Physical Characteristics by Using Digital Mammogram Images

Pattern Recognition and Size Prediction of Microcalcification Based on Physical Characteristics... Breast cancer is one of the life-threatening cancers occurring in women. In recent years, from the surveys provided by various medical organizations, it has become clear that the mortality rate of females is increasing owing to the late detection of breast cancer. Therefore, an automated algorithm is needed to identify the early occurrence of microcalcification, which would assist radiologists and physicians in reducing the false predictions via image processing techniques. In this work, we propose a new algorithm to detect the pattern of a microcalcification by calculating its physical characteristics. The considered physical char- acteristics are the reflection coefficient and mass density of the binned digital mammogram image. The calculation of physical characteristics doubly confirms the presence of malignant microcalcification. Subsequently, by interpolating the physical char- acteristics via thresholding and mapping techniques, a three-dimensional (3D) projection of the region of interest (RoI) is obtained in terms of the distance in millimeter. The size of a microcalcification is determined using this 3D-projected view. This algorithm is verified with 100 abnormal mammogram images showing microcalcification and 10 normal mammogram images. In addition to the size calculation, the proposed algorithm acts as a good classifier that is used to classify the considered http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Digital Imaging Springer Journals

Pattern Recognition and Size Prediction of Microcalcification Based on Physical Characteristics by Using Digital Mammogram Images

Loading next page...
 
/lp/springer_journal/pattern-recognition-and-size-prediction-of-microcalcification-based-on-p50AO0k6vq
Publisher
Springer Journals
Copyright
Copyright © 2018 by Society for Imaging Informatics in Medicine
Subject
Medicine & Public Health; Imaging / Radiology
ISSN
0897-1889
eISSN
1618-727X
D.O.I.
10.1007/s10278-018-0075-x
Publisher site
See Article on Publisher Site

Abstract

Breast cancer is one of the life-threatening cancers occurring in women. In recent years, from the surveys provided by various medical organizations, it has become clear that the mortality rate of females is increasing owing to the late detection of breast cancer. Therefore, an automated algorithm is needed to identify the early occurrence of microcalcification, which would assist radiologists and physicians in reducing the false predictions via image processing techniques. In this work, we propose a new algorithm to detect the pattern of a microcalcification by calculating its physical characteristics. The considered physical char- acteristics are the reflection coefficient and mass density of the binned digital mammogram image. The calculation of physical characteristics doubly confirms the presence of malignant microcalcification. Subsequently, by interpolating the physical char- acteristics via thresholding and mapping techniques, a three-dimensional (3D) projection of the region of interest (RoI) is obtained in terms of the distance in millimeter. The size of a microcalcification is determined using this 3D-projected view. This algorithm is verified with 100 abnormal mammogram images showing microcalcification and 10 normal mammogram images. In addition to the size calculation, the proposed algorithm acts as a good classifier that is used to classify the considered

Journal

Journal of Digital ImagingSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off