Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Pathological and molecular analyses of atherosclerotic lesions in ApoE-knockout mice

Pathological and molecular analyses of atherosclerotic lesions in ApoE-knockout mice The establishment of consistent and reliable methods for the analysis of atherosclerosis molecular pathways and for testing the efficiency of new therapeutics is of utmost importance. Here, we fed ApoE-knockout (KO) mice with high-fat diet to for 16 weeks to induce atherosclerosis. Atherosclerotic lesions in mice were methodically investigated using pathologic analyses and molecular biology tools. These lesions were histopathologically classified into three categories: early, progressive, and combined lesions. Immunohistochemical analyses showed that both F4/80 (macrophage marker) and tenascin-C are expressed in these lesions. Real-time PCR analysis conducted using formalin-fixed paraffin-embedded tissues with atherosclerotic lesions demonstrated an increase in the levels of many inflammatory chemokines, including Cxcl16, while antibody arrays performed using frozen atherosclerotic tissue samples showed elevated TIMP-1 expression. Subsequent immunohistochemical analyses showed that the expression of CXCL16, TIMP-1, MMP-9, MMP-8, and LOX-1 is localized in the atherosclerotic lesions. We confirmed that the expression of these proteins is localized to atherosclerotic lesion, which suggests their roles in the development of the lesions in ApoE-KO mice. Therefore, this mouse model represents an appropriate tool for elucidating molecular mechanisms underlying the development of atherosclerosis, and a model for the evaluation of therapeutic efficiency of novel drugs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Medical Molecular Morphology Springer Journals

Pathological and molecular analyses of atherosclerotic lesions in ApoE-knockout mice

Loading next page...
 
/lp/springer_journal/pathological-and-molecular-analyses-of-atherosclerotic-lesions-in-apoe-UkF5nM9JEV

References (52)

Publisher
Springer Journals
Copyright
Copyright © 2017 by The Japanese Society for Clinical Molecular Morphology
Subject
Medicine & Public Health; Pathology; Anatomy; Molecular Medicine
ISSN
1860-1480
eISSN
1860-1499
DOI
10.1007/s00795-017-0154-y
pmid
28247010
Publisher site
See Article on Publisher Site

Abstract

The establishment of consistent and reliable methods for the analysis of atherosclerosis molecular pathways and for testing the efficiency of new therapeutics is of utmost importance. Here, we fed ApoE-knockout (KO) mice with high-fat diet to for 16 weeks to induce atherosclerosis. Atherosclerotic lesions in mice were methodically investigated using pathologic analyses and molecular biology tools. These lesions were histopathologically classified into three categories: early, progressive, and combined lesions. Immunohistochemical analyses showed that both F4/80 (macrophage marker) and tenascin-C are expressed in these lesions. Real-time PCR analysis conducted using formalin-fixed paraffin-embedded tissues with atherosclerotic lesions demonstrated an increase in the levels of many inflammatory chemokines, including Cxcl16, while antibody arrays performed using frozen atherosclerotic tissue samples showed elevated TIMP-1 expression. Subsequent immunohistochemical analyses showed that the expression of CXCL16, TIMP-1, MMP-9, MMP-8, and LOX-1 is localized in the atherosclerotic lesions. We confirmed that the expression of these proteins is localized to atherosclerotic lesion, which suggests their roles in the development of the lesions in ApoE-KO mice. Therefore, this mouse model represents an appropriate tool for elucidating molecular mechanisms underlying the development of atherosclerosis, and a model for the evaluation of therapeutic efficiency of novel drugs.

Journal

Medical Molecular MorphologySpringer Journals

Published: Feb 28, 2017

There are no references for this article.