Passive jet control of flow around a circular cylinder

Passive jet control of flow around a circular cylinder In the present study, a passive flow control method, which is featured by passive windward suction combined with leeward jet over a circular cylinder for drag reduction and dynamic wind loading suppression, was experimentally investigated to manipulate unsteady wake vortex shedding from a circular cylinder. Four perforated pipe designs with different numbers of suction/jet holes (i.e., from 2 to 24 suction/jet holes) were used to create flow communicating channels between the windward and leeward stagnation points of a cylindrical test model. The experimental study was performed in a wind tunnel at a Reynolds number of Re = 4.16 × 104 based on the cylinder diameter and oncoming airflow speed. In addition to measuring surface pressure distributions to determine the dynamic wind loads acting on the test model, a digital particle image velocimetry (PIV) system was also used to quantify the wake flow characteristics in order to assess the effectiveness of the passive jet control method with different perforated pipe designs, in comparison with a baseline case without passive jet control. It was found that the passive jet control method is very effective in manipulating the wake vortex shedding process from the circular cylinder. The perforated pipe designs with more suction/jet holes were found to be more effective in reducing drag and suppressing fluctuating amplitude of the dynamic wind loads acting on the test model. With 24 suction/jet holes evenly distributed over the cylindrical test model (i.e., the N13 design of the present study), the passive jet control method was found to be able to achieve up to 33.7 % in drag reduction and 90.6 % in fluctuating wind loading suppression, in comparison with the baseline case. The PIV measurement results revealed clearly that the passive jet control method would cause airflow jets into the cylinder wake and change the shedding modes of the wake vortex structures from the cylindrical test model. Because of the dynamic interactions between the passive jets and the wake vortex structures, the antisymmetric pattern of the wake vortex shedding was found to be converted to symmetric mode. The periodicity of the vortex shedding was also observed to be diminished and eventually disappeared with the number increase in the suction/jet holes. A linear stability analysis was performed to suggest that the passive jet flow would modify the wake stability of the circular cylinder by decreasing the disturbance growth rate in the immediate wake and pushing the region of absolute instability further downstream. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Passive jet control of flow around a circular cylinder

Loading next page...
 
/lp/springer_journal/passive-jet-control-of-flow-around-a-circular-cylinder-PDrRqChx84
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-2077-5
Publisher site
See Article on Publisher Site

Abstract

In the present study, a passive flow control method, which is featured by passive windward suction combined with leeward jet over a circular cylinder for drag reduction and dynamic wind loading suppression, was experimentally investigated to manipulate unsteady wake vortex shedding from a circular cylinder. Four perforated pipe designs with different numbers of suction/jet holes (i.e., from 2 to 24 suction/jet holes) were used to create flow communicating channels between the windward and leeward stagnation points of a cylindrical test model. The experimental study was performed in a wind tunnel at a Reynolds number of Re = 4.16 × 104 based on the cylinder diameter and oncoming airflow speed. In addition to measuring surface pressure distributions to determine the dynamic wind loads acting on the test model, a digital particle image velocimetry (PIV) system was also used to quantify the wake flow characteristics in order to assess the effectiveness of the passive jet control method with different perforated pipe designs, in comparison with a baseline case without passive jet control. It was found that the passive jet control method is very effective in manipulating the wake vortex shedding process from the circular cylinder. The perforated pipe designs with more suction/jet holes were found to be more effective in reducing drag and suppressing fluctuating amplitude of the dynamic wind loads acting on the test model. With 24 suction/jet holes evenly distributed over the cylindrical test model (i.e., the N13 design of the present study), the passive jet control method was found to be able to achieve up to 33.7 % in drag reduction and 90.6 % in fluctuating wind loading suppression, in comparison with the baseline case. The PIV measurement results revealed clearly that the passive jet control method would cause airflow jets into the cylinder wake and change the shedding modes of the wake vortex structures from the cylindrical test model. Because of the dynamic interactions between the passive jets and the wake vortex structures, the antisymmetric pattern of the wake vortex shedding was found to be converted to symmetric mode. The periodicity of the vortex shedding was also observed to be diminished and eventually disappeared with the number increase in the suction/jet holes. A linear stability analysis was performed to suggest that the passive jet flow would modify the wake stability of the circular cylinder by decreasing the disturbance growth rate in the immediate wake and pushing the region of absolute instability further downstream.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 30, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off