Passive control of roll oscillations of low-aspect-ratio wings using bleed

Passive control of roll oscillations of low-aspect-ratio wings using bleed A passive flow control method, which uses bleed from a slot near the wing tip, has been shown to attenuate self-excited roll oscillations of a low-aspect-ratio (AR = 2) rectangular flat plate wing. This method was found to be successful across the whole range of angle of attack and better than previous active flow control methods. The effectiveness of the slot strongly depends on its location and width. For effective slot geometries, the tip vortex becomes less coherent, almost eliminating the roll oscillations. Nonlinear interactions between the shear layers shed from the tip and the slot, as well as between the shear layer and the counter-rotating vortex may act as excitation, which can modify the response of the self-sustained oscillator. When the slot is located too close to the tip, there is rapid merging of the shear layers and less interaction, and the slot loses its effectiveness. Also, when the slot is narrow, there is insufficient bleed, resulting in less effective attenuation. Force measurements revealed that this technique can be used as an effective method to suppress roll oscillations without sacrificing and possibly improving aerodynamic performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Passive control of roll oscillations of low-aspect-ratio wings using bleed

Loading next page...
 
/lp/springer_journal/passive-control-of-roll-oscillations-of-low-aspect-ratio-wings-using-74wdCUMlv4
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1752-2
Publisher site
See Article on Publisher Site

Abstract

A passive flow control method, which uses bleed from a slot near the wing tip, has been shown to attenuate self-excited roll oscillations of a low-aspect-ratio (AR = 2) rectangular flat plate wing. This method was found to be successful across the whole range of angle of attack and better than previous active flow control methods. The effectiveness of the slot strongly depends on its location and width. For effective slot geometries, the tip vortex becomes less coherent, almost eliminating the roll oscillations. Nonlinear interactions between the shear layers shed from the tip and the slot, as well as between the shear layer and the counter-rotating vortex may act as excitation, which can modify the response of the self-sustained oscillator. When the slot is located too close to the tip, there is rapid merging of the shear layers and less interaction, and the slot loses its effectiveness. Also, when the slot is narrow, there is insufficient bleed, resulting in less effective attenuation. Force measurements revealed that this technique can be used as an effective method to suppress roll oscillations without sacrificing and possibly improving aerodynamic performance.

Journal

Experiments in FluidsSpringer Journals

Published: May 28, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off