Partitioning functions for stateful data parallelism in stream processing

Partitioning functions for stateful data parallelism in stream processing In this paper, we study partitioning functions for stream processing systems that employ stateful data parallelism to improve application throughput. In particular, we develop partitioning functions that are effective under workloads where the domain of the partitioning key is large and its value distribution is skewed. We define various desirable properties for partitioning functions, ranging from balance properties such as memory, processing, and communication balance, structural properties such as compactness and fast lookup, and adaptation properties such as fast computation and minimal migration. We introduce a partitioning function structure that is compact and develop several associated heuristic construction techniques that exhibit good balance and low migration cost under skewed workloads. We provide experimental results that compare our partitioning functions to more traditional approaches such as uniform and consistent hashing, under different workload and application characteristics, and show superior performance. The VLDB Journal Springer Journals

Partitioning functions for stateful data parallelism in stream processing

Loading next page...
Springer Berlin Heidelberg
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial