Partitioning functions for stateful data parallelism in stream processing

Partitioning functions for stateful data parallelism in stream processing In this paper, we study partitioning functions for stream processing systems that employ stateful data parallelism to improve application throughput. In particular, we develop partitioning functions that are effective under workloads where the domain of the partitioning key is large and its value distribution is skewed. We define various desirable properties for partitioning functions, ranging from balance properties such as memory, processing, and communication balance, structural properties such as compactness and fast lookup, and adaptation properties such as fast computation and minimal migration. We introduce a partitioning function structure that is compact and develop several associated heuristic construction techniques that exhibit good balance and low migration cost under skewed workloads. We provide experimental results that compare our partitioning functions to more traditional approaches such as uniform and consistent hashing, under different workload and application characteristics, and show superior performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Partitioning functions for stateful data parallelism in stream processing

Loading next page...
 
/lp/springer_journal/partitioning-functions-for-stateful-data-parallelism-in-stream-BS0xltdLat
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-013-0335-9
Publisher site
See Article on Publisher Site

Abstract

In this paper, we study partitioning functions for stream processing systems that employ stateful data parallelism to improve application throughput. In particular, we develop partitioning functions that are effective under workloads where the domain of the partitioning key is large and its value distribution is skewed. We define various desirable properties for partitioning functions, ranging from balance properties such as memory, processing, and communication balance, structural properties such as compactness and fast lookup, and adaptation properties such as fast computation and minimal migration. We introduce a partitioning function structure that is compact and develop several associated heuristic construction techniques that exhibit good balance and low migration cost under skewed workloads. We provide experimental results that compare our partitioning functions to more traditional approaches such as uniform and consistent hashing, under different workload and application characteristics, and show superior performance.

Journal

The VLDB JournalSpringer Journals

Published: Aug 1, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off