Partitioning-based approach to control the restored path length in p-cycle-based survivable optical networks

Partitioning-based approach to control the restored path length in p-cycle-based survivable... In recent years, p-cycles have been widely investigated for survivability of WDM networks. They provide fast recovery speed such as ring and capacity efficiency as mesh survivability schemes. However, restoration paths are very long, which causes excessive latency and intolerable physical impairments. On the other hand, nowadays, a wide set of applications require an optical path with almost no delay. The existing approaches, namely loopbacks removal and inter-cycle switching, provide a significant reduction in the restored path, but even then a number of restored paths remain many times longer than the working path lengths. In this paper, we propose a network partitioning-based approach to control the length of each restored path as per delay sustainability of time critical applications. The basic idea of the work is to partition the network into domains and construct the p-cycles for each domain independently. The domain wise construction of p-cycles restricts their length, which consequently reduces the length of restored paths. Here, we introduce a new concept where the selected border nodes are overlapped among adjacent domains to cover inter-domain spans of the network as a domain span in order to ensure their survivability through domain p-cycles. Simulation results show that the proposed solution is good enough to control the restored path length with small augmentation in redundancy of spare capacity as compared to optimal design of p-cycles. More importantly, it enhances the dual failure restorability significantly. Photonic Network Communications Springer Journals

Partitioning-based approach to control the restored path length in p-cycle-based survivable optical networks

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial