Particle-wall collision in shear thinning fluids

Particle-wall collision in shear thinning fluids The present study deals with the measurements of the impact w i and rebound w r velocities of steel particles in different fluids colliding with a rigid wall. The results are presented in terms of the coefficient of restitution e=w r/w i as a function of the Stokes number (ratio between the particle inertia and the viscous forces). We focus the attention on possible differences between rebounds that occur in Newtonian fluids and in non-Newtonian, shear thinning fluids. The measurements of wet coefficients of restitution in Newtonian fluid are in good agreement with the experimental data found by Gondret et al. (2002). In the range of Stokes number investigated, an increase of the coefficient of restitution with the shear thinning fluid is clearly observed with respect to the Newtonian data. Particular attention has been dedicated to techniques of image processing to perform an optimal estimation of the particle centroid in highly noisy images. Experiments in Fluids Springer Journals

Particle-wall collision in shear thinning fluids

Loading next page...
Copyright © 2005 by Springer-Verlag
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial