Particle tracking velocimetry and accelerometry (PTVA) measurements applied to quasi-two-dimensional multi-scale flows

Particle tracking velocimetry and accelerometry (PTVA) measurements applied to... We have developed and validated a new adaptive method, particle tracking velocimetry and accelerometry (PTVA), to measure velocity and acceleration from the post-processing of particle tracking (PT) data. This method is shown to be more accurate than non-adaptive methods based on PT: errors are about six times smaller on velocity measurements and about four times smaller on acceleration ones. We apply this method to a turbulent-like flow generated and controlled in the laboratory. Taking advantage of the Eulerian repeatability of our multi-scale laminar flow, we are able to extract the acceleration field, a, and all terms of Navier–Stokes equation. To complete this we extract u·a and ∇·a fields. We finally compare the probability density function of the acceleration components of our turbulent-like flow with one of the highly turbulent flows and show that they are similar. The quality of these PTVA results and their robustness (in particular to local convection) are extremely encouraging. This method allows access to a deeper insight into the physic of turbulent-like flows and its high accuracy may apply to a broader range of flows. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Particle tracking velocimetry and accelerometry (PTVA) measurements applied to quasi-two-dimensional multi-scale flows

Loading next page...
 
/lp/springer_journal/particle-tracking-velocimetry-and-accelerometry-ptva-measurements-00tRTp9CGF
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0443-7
Publisher site
See Article on Publisher Site

Abstract

We have developed and validated a new adaptive method, particle tracking velocimetry and accelerometry (PTVA), to measure velocity and acceleration from the post-processing of particle tracking (PT) data. This method is shown to be more accurate than non-adaptive methods based on PT: errors are about six times smaller on velocity measurements and about four times smaller on acceleration ones. We apply this method to a turbulent-like flow generated and controlled in the laboratory. Taking advantage of the Eulerian repeatability of our multi-scale laminar flow, we are able to extract the acceleration field, a, and all terms of Navier–Stokes equation. To complete this we extract u·a and ∇·a fields. We finally compare the probability density function of the acceleration components of our turbulent-like flow with one of the highly turbulent flows and show that they are similar. The quality of these PTVA results and their robustness (in particular to local convection) are extremely encouraging. This method allows access to a deeper insight into the physic of turbulent-like flows and its high accuracy may apply to a broader range of flows.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 8, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off