Particle imaging techniques for microfabricated fluidic systems

Particle imaging techniques for microfabricated fluidic systems This paper presents the design and implementation of velocimetry techniques applicable to the analysis of microfluidic systems. The application of both micron-resolution particle image velocimetry (micro-PIV) and particle tracking velocimetry (PTV) to the measurement of velocity fields within micromachined fluidic channels is presented. The particle tracking system uses epifluorescent microscopy, CCD imaging, and specialized image interrogation algorithms to provide microscale velocity measurement resolution. The flow field in a straight channel section is measured using cross-correlation micro-PIV and compared to the analytical solution for a measured mass flow rate. Velocity field measurements of the flow at the intersection of a cross-channel are also presented and compared with simulations from a commercially available flow solver, CFD-ACE+. Discussions regarding flow seeding, imaging optics, and the flow setup for measuring flows in microfabricated fluidic devices are presented. A simple process for estimating measurement uncertainty of the in-plane velocity measurements caused by three-dimensional Brownian motion is described. A definition for the measurement depth for PTV measurements is proposed. The agreement between measured and predicted values lends further support to the argument that liquid microflows with characteristic dimensions of order 50-μm dimension channels follow macroscale flow theory. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Particle imaging techniques for microfabricated fluidic systems

Loading next page...
 
/lp/springer_journal/particle-imaging-techniques-for-microfabricated-fluidic-systems-vk0SwFJ0hk
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-003-0588-y
Publisher site
See Article on Publisher Site

Abstract

This paper presents the design and implementation of velocimetry techniques applicable to the analysis of microfluidic systems. The application of both micron-resolution particle image velocimetry (micro-PIV) and particle tracking velocimetry (PTV) to the measurement of velocity fields within micromachined fluidic channels is presented. The particle tracking system uses epifluorescent microscopy, CCD imaging, and specialized image interrogation algorithms to provide microscale velocity measurement resolution. The flow field in a straight channel section is measured using cross-correlation micro-PIV and compared to the analytical solution for a measured mass flow rate. Velocity field measurements of the flow at the intersection of a cross-channel are also presented and compared with simulations from a commercially available flow solver, CFD-ACE+. Discussions regarding flow seeding, imaging optics, and the flow setup for measuring flows in microfabricated fluidic devices are presented. A simple process for estimating measurement uncertainty of the in-plane velocity measurements caused by three-dimensional Brownian motion is described. A definition for the measurement depth for PTV measurements is proposed. The agreement between measured and predicted values lends further support to the argument that liquid microflows with characteristic dimensions of order 50-μm dimension channels follow macroscale flow theory.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 5, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off