Particle image velocimetry experiments on a macro-scale model for bacterial flagellar bundling

Particle image velocimetry experiments on a macro-scale model for bacterial flagellar bundling Escherichia coli (E. coli) and other bacteria are propelled through water by several helical flagella, which are rotated by motors embedded at random points on the cell wall. Depending on the handedness and rotation sense, the motion of the flagella induces a flow field that causes them to wrap around each other and form a bundle. Our objective is to understand and model the mechanics of this process. Full-scale flagella are 10 μm in length, 20 nm in diameter, and turn at a rate of 100 Hz. To accurately simulate bundling at a more easily observable scale, we built a scale model in which 20-cm-long helices are rotated in 100,000 cp silicone oil (Poly-di-methyl-siloxane). The highly viscous oil ensures an appropriately low Reynolds number. We developed a macro-scale particle image velocimetry (PIV) system to measure the full-field velocity distribution for rotating rigid helices and rotating flexible helices. In the latter case, the helices were made from epoxy-filled plastic tubing to give approximately the same ratio of elastic to viscous stresses as in the full-scale flagella. Comparison between PIV measurements and slender-body calculations shows good agreement for the case of rigid helices. For the flexible helices, we find that the flow field generated by a bundle in the steady state is well approximated by the flow generated by a single rigid helix with twice the filament radius. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Particle image velocimetry experiments on a macro-scale model for bacterial flagellar bundling

Loading next page...
 
/lp/springer_journal/particle-image-velocimetry-experiments-on-a-macro-scale-model-for-NdZzZYzWuf
Publisher
Springer Journals
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-004-0848-5
Publisher site
See Article on Publisher Site

Abstract

Escherichia coli (E. coli) and other bacteria are propelled through water by several helical flagella, which are rotated by motors embedded at random points on the cell wall. Depending on the handedness and rotation sense, the motion of the flagella induces a flow field that causes them to wrap around each other and form a bundle. Our objective is to understand and model the mechanics of this process. Full-scale flagella are 10 μm in length, 20 nm in diameter, and turn at a rate of 100 Hz. To accurately simulate bundling at a more easily observable scale, we built a scale model in which 20-cm-long helices are rotated in 100,000 cp silicone oil (Poly-di-methyl-siloxane). The highly viscous oil ensures an appropriately low Reynolds number. We developed a macro-scale particle image velocimetry (PIV) system to measure the full-field velocity distribution for rotating rigid helices and rotating flexible helices. In the latter case, the helices were made from epoxy-filled plastic tubing to give approximately the same ratio of elastic to viscous stresses as in the full-scale flagella. Comparison between PIV measurements and slender-body calculations shows good agreement for the case of rigid helices. For the flexible helices, we find that the flow field generated by a bundle in the steady state is well approximated by the flow generated by a single rigid helix with twice the filament radius.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 20, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off