Particle–fluid interactions in rotor-generated vortex flows

Particle–fluid interactions in rotor-generated vortex flows An investigation was made into the particle-laden turbulent flow produced by a rotor hovering in ground effect over a mobile sediment bed. Measurements of the two-phase flow were made using time-resolved particle image velocimetry and particle tracking velocimetry as the rotor wake and its embedded vorticity approached and interacted with the sediment bed. Mobilized particles of 45–63 μm diameter (estimated to have a particle Reynolds number of <30 and a Stokes number of about 60) were individually identified and tracked in the resulting flow, with the objective of relating any changes in the vortical flow and turbulence characteristics of the carrier flow phase to the action of the dispersed particle phase. It was observed that, in general, a two-way coupling between the flow phases was produced near the ground, and in some cases, the coupling was very significant. Specifically, it was shown that the uplifted particles altered the carrier flow near the sediment bed, leading to an earlier distortion of the external flow induced by the blade tip vortices and to the accelerated diffusion of the vorticity they contained. The uplifted particles were also seen to modify the overall turbulence field, and when sufficient particle concentrations built up, the particles began to attenuate the turbulence levels. Even in regions with lower particle concentrations, turbulence was found to be attenuated by the indirect action of the particles because of the distortions made to the tip vortices, which were otherwise a significant source of turbulence production. After the tip vortices had diffused further downstream, the uplifted particles were also found to increase the anisotropy of turbulence in the flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Particle–fluid interactions in rotor-generated vortex flows

Loading next page...
 
/lp/springer_journal/particle-fluid-interactions-in-rotor-generated-vortex-flows-FddMssgZhw
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1689-5
Publisher site
See Article on Publisher Site

Abstract

An investigation was made into the particle-laden turbulent flow produced by a rotor hovering in ground effect over a mobile sediment bed. Measurements of the two-phase flow were made using time-resolved particle image velocimetry and particle tracking velocimetry as the rotor wake and its embedded vorticity approached and interacted with the sediment bed. Mobilized particles of 45–63 μm diameter (estimated to have a particle Reynolds number of <30 and a Stokes number of about 60) were individually identified and tracked in the resulting flow, with the objective of relating any changes in the vortical flow and turbulence characteristics of the carrier flow phase to the action of the dispersed particle phase. It was observed that, in general, a two-way coupling between the flow phases was produced near the ground, and in some cases, the coupling was very significant. Specifically, it was shown that the uplifted particles altered the carrier flow near the sediment bed, leading to an earlier distortion of the external flow induced by the blade tip vortices and to the accelerated diffusion of the vorticity they contained. The uplifted particles were also seen to modify the overall turbulence field, and when sufficient particle concentrations built up, the particles began to attenuate the turbulence levels. Even in regions with lower particle concentrations, turbulence was found to be attenuated by the indirect action of the particles because of the distortions made to the tip vortices, which were otherwise a significant source of turbulence production. After the tip vortices had diffused further downstream, the uplifted particles were also found to increase the anisotropy of turbulence in the flow.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 2, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off