Parity symmetrical collaborative representation-based classification for face recognition

Parity symmetrical collaborative representation-based classification for face recognition Although the subspace-based feature extraction algorithms provided a feasible strategy to deal with the classification of high-dimensional data, most of the existing algorithms are locality-oriented and suffer from many difficulties such as uncertain information associated with dataset and small sample size problem. In this paper, we propose a novel collaborative representation-based classification method using parity symmetry strategy for face recognition. More specifically, we firstly synthesize a set of parity symmetrical images by means of odd–even decomposition theorem, aiming to augment the training set. Secondly, each query sample is represented as a linear combination of the training samples from the extended training set, we then exploit the optimal representation of each reconstructed image with relevant contribution from each class. The final goal of the proposed method is to generate the best parity symmetrical representation of the query sample to perform robust face classification. Experimental results conducted on ORL, FERET, AR, PIE and LFW face databases demonstrate the effectiveness of the proposed method. International Journal of Machine Learning and Cybernetics Springer Journals

Parity symmetrical collaborative representation-based classification for face recognition

Loading next page...
Springer Berlin Heidelberg
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Control, Robotics, Mechatronics; Complex Systems; Systems Biology; Pattern Recognition
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial