Parental genetic contributions in the AXB and BXA recombinant inbred mouse strains

Parental genetic contributions in the AXB and BXA recombinant inbred mouse strains Recombinant inbred (RI) strains are a valuable tool in mouse genetics to rapidly map the location of a new locus. Because RI strains have been typed for hundreds of genetic markers, the genotypes of individual strains within an RI set can be examined to identify specific strain(s) containing the desired region(s) of interest (e.g., one or more quantitative trait loci, QTLs) for subsequent phenotype testing. Specific RI strains might also be identified for use as progenitors in the construction of consomic (chromosome substitution strains or CSSs) or congenic lines or for use in the RI strain test (RIST). To quickly identify the genetic contributions of the parental A/J (A) and C57BL/6J (B) strains, we have generated chromosome maps for each commercially available AXB and BXA RI strain, in which the genetic loci are colorcoded to signify the parent of origin. To further assist in strain selection for further breeding schemes, the percentages of A and B parental contributions were calculated, based on the total number of typed markers in the database for each strain. With these data, one can rapidly select the RI strain(s) carrying the desired donor and recipient strain region(s). Because points of recombination are known, starting with RI mice to generate CSSs or congenic lines immediately reduces genomewide screening to those donor-strain regions not already homozygous in the recipient strain. Two examples are presented to demonstrate potential uses of the generated chromosome maps: to select RI strains to construct congenic lines and to perform an RIST forAliq1, a QTL linked to ozone-induced acute lung injury survival. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Parental genetic contributions in the AXB and BXA recombinant inbred mouse strains

Loading next page...
 
/lp/springer_journal/parental-genetic-contributions-in-the-axb-and-bxa-recombinant-inbred-QJ6WRrnNLz
Publisher
Springer Journals
Copyright
Copyright © 2002 by Springer-Verlag New York Inc
Subject
Life Sciences; Anatomy; Cell Biology; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/BF02684016
Publisher site
See Article on Publisher Site

Abstract

Recombinant inbred (RI) strains are a valuable tool in mouse genetics to rapidly map the location of a new locus. Because RI strains have been typed for hundreds of genetic markers, the genotypes of individual strains within an RI set can be examined to identify specific strain(s) containing the desired region(s) of interest (e.g., one or more quantitative trait loci, QTLs) for subsequent phenotype testing. Specific RI strains might also be identified for use as progenitors in the construction of consomic (chromosome substitution strains or CSSs) or congenic lines or for use in the RI strain test (RIST). To quickly identify the genetic contributions of the parental A/J (A) and C57BL/6J (B) strains, we have generated chromosome maps for each commercially available AXB and BXA RI strain, in which the genetic loci are colorcoded to signify the parent of origin. To further assist in strain selection for further breeding schemes, the percentages of A and B parental contributions were calculated, based on the total number of typed markers in the database for each strain. With these data, one can rapidly select the RI strain(s) carrying the desired donor and recipient strain region(s). Because points of recombination are known, starting with RI mice to generate CSSs or congenic lines immediately reduces genomewide screening to those donor-strain regions not already homozygous in the recipient strain. Two examples are presented to demonstrate potential uses of the generated chromosome maps: to select RI strains to construct congenic lines and to perform an RIST forAliq1, a QTL linked to ozone-induced acute lung injury survival.

Journal

Mammalian GenomeSpringer Journals

Published: Jul 31, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off