Parametric study on the fuel film breakup of a cold start PFI engine

Parametric study on the fuel film breakup of a cold start PFI engine In order to provide more insight on improving the cold start fuel atomization for reducing unburned hydrocarbon emissions, the liquid fuel film breakup phenomenon in the intake valve/port region was investigated in depth for port-fuel-injected engines. Experiments were conducted using high-speed high-resolution imaging techniques to visualize the liquid film atomization and airflow patterns in an axisymmetric steady flow apparatus. The impact of valve/port seat geometry, surface roughness, and fuel properties on airflow separation and fuel film breakup were determined through a parametric study. CFD simulations were also performed with FLUENT to help understand the airflow behavior inside the intake port and valve gap region and its potential impact on fuel film atomization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Parametric study on the fuel film breakup of a cold start PFI engine

Loading next page...
 
/lp/springer_journal/parametric-study-on-the-fuel-film-breakup-of-a-cold-start-pfi-engine-o0zvkUwKM4
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-004-0827-x
Publisher site
See Article on Publisher Site

Abstract

In order to provide more insight on improving the cold start fuel atomization for reducing unburned hydrocarbon emissions, the liquid fuel film breakup phenomenon in the intake valve/port region was investigated in depth for port-fuel-injected engines. Experiments were conducted using high-speed high-resolution imaging techniques to visualize the liquid film atomization and airflow patterns in an axisymmetric steady flow apparatus. The impact of valve/port seat geometry, surface roughness, and fuel properties on airflow separation and fuel film breakup were determined through a parametric study. CFD simulations were also performed with FLUENT to help understand the airflow behavior inside the intake port and valve gap region and its potential impact on fuel film atomization.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 24, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off