Parameters of photosynthesis light curve in Salix dasyclados and their changes during the growth season

Parameters of photosynthesis light curve in Salix dasyclados and their changes during the growth... A dependence of the photosynthesis rate on light is characterized by a number of parameters that are often used for comparison between plant species or for finding photosynthesis interconnections with other physiological processes. In order to properly assessed these parameters, we measured the maximum apparent photosynthesis rate (P max), dark respiration rate (R d), light compensation point (LCP), quantum yield corresponding to photosynthetic efficiency (QY), and the light saturation constant (K s), taking into consideration the leaf plastochron index during vegetation of one of the willow species (Salix dasyclados Wimn.). The P max value was the highest in the beginning of the growth season when the leaf reached 65% of its full area; after that P max slowly declined. The most important cardinal value for R d is its plateau reached by the end of leaf growth, i.e., later than the photosynthesis rate maximum. This plateau value also decreased during vegetation. The LCP value changed in the same way as R d but reached its plateau simultaneously with the photosynthesis rate maximum. QY also reached its maximum at the same time with the photosynthesis rate; during vegetation it changed more than twofold. The K s value also changed almost twofold during the season, reaching its maximum together or slightly later than the photosynthesis maximum and then remained constant. Thus, we have found significant changes in the parameters of the photosynthesis light curve during growth season. This shows that they can be used only after a thorough study of leaf development in each particular plant species. Usually performed measuring gas exchange parameters in fully developed leaves does not yield their maximum values and thus does not have any physiological sense. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Parameters of photosynthesis light curve in Salix dasyclados and their changes during the growth season

Loading next page...
 
/lp/springer_journal/parameters-of-photosynthesis-light-curve-in-salix-dasyclados-and-their-4SUMK0Duvf
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443709040025
Publisher site
See Article on Publisher Site

Abstract

A dependence of the photosynthesis rate on light is characterized by a number of parameters that are often used for comparison between plant species or for finding photosynthesis interconnections with other physiological processes. In order to properly assessed these parameters, we measured the maximum apparent photosynthesis rate (P max), dark respiration rate (R d), light compensation point (LCP), quantum yield corresponding to photosynthetic efficiency (QY), and the light saturation constant (K s), taking into consideration the leaf plastochron index during vegetation of one of the willow species (Salix dasyclados Wimn.). The P max value was the highest in the beginning of the growth season when the leaf reached 65% of its full area; after that P max slowly declined. The most important cardinal value for R d is its plateau reached by the end of leaf growth, i.e., later than the photosynthesis rate maximum. This plateau value also decreased during vegetation. The LCP value changed in the same way as R d but reached its plateau simultaneously with the photosynthesis rate maximum. QY also reached its maximum at the same time with the photosynthesis rate; during vegetation it changed more than twofold. The K s value also changed almost twofold during the season, reaching its maximum together or slightly later than the photosynthesis maximum and then remained constant. Thus, we have found significant changes in the parameters of the photosynthesis light curve during growth season. This shows that they can be used only after a thorough study of leaf development in each particular plant species. Usually performed measuring gas exchange parameters in fully developed leaves does not yield their maximum values and thus does not have any physiological sense.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 28, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off