Parameterized Complexity of Secluded Connectivity Problems

Parameterized Complexity of Secluded Connectivity Problems The Secluded Path problem models a situation where sensitive information has to be transmitted between a pair of nodes along a path in a network. The measure of the quality of a selected path is its exposure cost, which is the total cost of vertices in its closed neighborhood. The task is to select a secluded path, i.e., a path with a small exposure cost. Similarly, the Secluded Steiner Tree problem is to find a tree in a graph connecting a given set of terminals such that the exposure cost of the tree is minimized. In this paper we present a systematic study of the parameterized complexity of Secluded Steiner Tree. In particular, we establish the tractability of Secluded Path being parameterized by “above guarantee” value, which in this case is the length of a shortest path between vertices. We also show how to extend this result for Secluded Steiner Tree, in this case we parameterize above the size of an optimal Steiner tree and the number of terminals. We also consider various parameterization of the problems such as by the treewidth, the size of a vertex cover, feedback vertex set, or the maximum vertex degree and establish kernelization complexity of the problem subject to different choices of parameters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Theory of Computing Systems Springer Journals

Parameterized Complexity of Secluded Connectivity Problems

Loading next page...
 
/lp/springer_journal/parameterized-complexity-of-secluded-connectivity-problems-6KofDeslsg
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Theory of Computation
ISSN
1432-4350
eISSN
1433-0490
D.O.I.
10.1007/s00224-016-9717-x
Publisher site
See Article on Publisher Site

Abstract

The Secluded Path problem models a situation where sensitive information has to be transmitted between a pair of nodes along a path in a network. The measure of the quality of a selected path is its exposure cost, which is the total cost of vertices in its closed neighborhood. The task is to select a secluded path, i.e., a path with a small exposure cost. Similarly, the Secluded Steiner Tree problem is to find a tree in a graph connecting a given set of terminals such that the exposure cost of the tree is minimized. In this paper we present a systematic study of the parameterized complexity of Secluded Steiner Tree. In particular, we establish the tractability of Secluded Path being parameterized by “above guarantee” value, which in this case is the length of a shortest path between vertices. We also show how to extend this result for Secluded Steiner Tree, in this case we parameterize above the size of an optimal Steiner tree and the number of terminals. We also consider various parameterization of the problems such as by the treewidth, the size of a vertex cover, feedback vertex set, or the maximum vertex degree and establish kernelization complexity of the problem subject to different choices of parameters.

Journal

Theory of Computing SystemsSpringer Journals

Published: Nov 10, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off