Parameterization of the in-water motions of falling cylinders using high-speed video

Parameterization of the in-water motions of falling cylinders using high-speed video A methodology to observe the motions of large cylinders falling freely at large (~106) Reynolds numbers using a stereometric, high-speed video technique is presented. Parameter variation in length, weight, center of mass, and nose shape combined with changes in release height and initial inclination angle were used to estimate the influence of net drag forces on six cylinder bodies. Cylinders with coincident centers of volume and mass typically assumed body orientations with the major axis aligned normal to the path of descent indicating that buoyancy forces and turbulent drag balanced the inertia of the body and displaced water. Displacement of the center of mass resulted in more vertical orientations and more complex motions. Abrupt changes in position, orientation, and velocity were also observed when air-dropped cylinders separated from a trapped cloud of bubbles signifying the onset of less predictable behaviors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Parameterization of the in-water motions of falling cylinders using high-speed video

Loading next page...
 
/lp/springer_journal/parameterization-of-the-in-water-motions-of-falling-cylinders-using-QfOVeJBvwF
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-004-0859-2
Publisher site
See Article on Publisher Site

Abstract

A methodology to observe the motions of large cylinders falling freely at large (~106) Reynolds numbers using a stereometric, high-speed video technique is presented. Parameter variation in length, weight, center of mass, and nose shape combined with changes in release height and initial inclination angle were used to estimate the influence of net drag forces on six cylinder bodies. Cylinders with coincident centers of volume and mass typically assumed body orientations with the major axis aligned normal to the path of descent indicating that buoyancy forces and turbulent drag balanced the inertia of the body and displaced water. Displacement of the center of mass resulted in more vertical orientations and more complex motions. Abrupt changes in position, orientation, and velocity were also observed when air-dropped cylinders separated from a trapped cloud of bubbles signifying the onset of less predictable behaviors.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 2, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off