Parallel and survivable multipath circuit provisioning in ESnet’s OSCARS

Parallel and survivable multipath circuit provisioning in ESnet’s OSCARS Data generation is approaching petascale and exascale rates by cutting-edge science and research applications varying from material informatics to physics. With data generation and management comes the necessity to transmit such vast collections of information across the world’s networks for processing, analysis, storage, or peer-sharing. This practice is becoming the norm to the large-scale scientific community, but complications can arise during networking. There are countless situations such as component failure due to a harmless construction accident or a devastating natural disaster that may lead to catastrophic interruption of service. Furthermore, given the size of datasets, there is a strong need to support intelligent and fast parallelism throughout the network to allow end users to efficiently consume available bandwidth. We therefore propose a multipath extension for ESnet’s On-demand Secure Circuits and Advance Reservation System (OSCARS), the network research community’s most popular long-lived circuit-provisioning software package. Presently, OSCARS supports purely point-to-point circuits; however, our proposed client software provides an overlay onto the default OSCARS path computation engine that enables end users to route their data along multiple link-disjoint paths to provide session survivability and increase the degree of parallelism. We have also adapted the proposed multipath extension to an existing anycast OSCARS deployment, which allows for the selection of one preferred destination node from among a set of potential candidates. Through thorough simulation analysis and exposure to realistic failure event distributions, we quantitatively evaluate the multipath client performance and showcase the relative benefits when compared to the standard single-path OSCARS deployment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Parallel and survivable multipath circuit provisioning in ESnet’s OSCARS

Loading next page...
 
/lp/springer_journal/parallel-and-survivable-multipath-circuit-provisioning-in-esnet-s-a7a8NHHcUO
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-015-0535-x
Publisher site
See Article on Publisher Site

Abstract

Data generation is approaching petascale and exascale rates by cutting-edge science and research applications varying from material informatics to physics. With data generation and management comes the necessity to transmit such vast collections of information across the world’s networks for processing, analysis, storage, or peer-sharing. This practice is becoming the norm to the large-scale scientific community, but complications can arise during networking. There are countless situations such as component failure due to a harmless construction accident or a devastating natural disaster that may lead to catastrophic interruption of service. Furthermore, given the size of datasets, there is a strong need to support intelligent and fast parallelism throughout the network to allow end users to efficiently consume available bandwidth. We therefore propose a multipath extension for ESnet’s On-demand Secure Circuits and Advance Reservation System (OSCARS), the network research community’s most popular long-lived circuit-provisioning software package. Presently, OSCARS supports purely point-to-point circuits; however, our proposed client software provides an overlay onto the default OSCARS path computation engine that enables end users to route their data along multiple link-disjoint paths to provide session survivability and increase the degree of parallelism. We have also adapted the proposed multipath extension to an existing anycast OSCARS deployment, which allows for the selection of one preferred destination node from among a set of potential candidates. Through thorough simulation analysis and exposure to realistic failure event distributions, we quantitatively evaluate the multipath client performance and showcase the relative benefits when compared to the standard single-path OSCARS deployment.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 7, 2015

References

  • A quick method for finding shortest pairs of disjoint paths
    Suurballe, JW; Tarjan, RE

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off