PAPR Reduction in SLM–OFDM System Using Lehmer Sequence Without Explicit Side Information

PAPR Reduction in SLM–OFDM System Using Lehmer Sequence Without Explicit Side Information Selected mapping (SLM) is one of the promising techniques used for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) system. One of the major drawbacks in this technique is that, the transmitter is forced to transmit more amount of side information (SI) bits in order to recover the original data at the receiver, which leads to data rate loss and inefficient transmission. In this paper, a new phase sequence generation method using Lehmer Random Number Generator (LRNG) called Lehmer sequence is proposed for SLM technique. Using the periodicity property of this sequence, the SI bits are embedded within the transmitted data block for 16-PSK modulation, which ensures that SI bits are not explicitly sent. The simulation results show that the proposed SLM (PSLM) provides a slight improvement in PAPR reduction without compromising the bit error rate (BER) for higher values of an expansion factor when compared to conventional SLM (CSLM). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

PAPR Reduction in SLM–OFDM System Using Lehmer Sequence Without Explicit Side Information

Loading next page...
1
 
/lp/springer_journal/papr-reduction-in-slm-ofdm-system-using-lehmer-sequence-without-505nBD3yUu
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4793-z
Publisher site
See Article on Publisher Site

Abstract

Selected mapping (SLM) is one of the promising techniques used for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) system. One of the major drawbacks in this technique is that, the transmitter is forced to transmit more amount of side information (SI) bits in order to recover the original data at the receiver, which leads to data rate loss and inefficient transmission. In this paper, a new phase sequence generation method using Lehmer Random Number Generator (LRNG) called Lehmer sequence is proposed for SLM technique. Using the periodicity property of this sequence, the SI bits are embedded within the transmitted data block for 16-PSK modulation, which ensures that SI bits are not explicitly sent. The simulation results show that the proposed SLM (PSLM) provides a slight improvement in PAPR reduction without compromising the bit error rate (BER) for higher values of an expansion factor when compared to conventional SLM (CSLM).

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Aug 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off