Paenibacillus polymyxa ND25: candidate genome for lignocellulosic biomass utilization

Paenibacillus polymyxa ND25: candidate genome for lignocellulosic biomass utilization Genome sequence of Paenibacillus polymyxa ND25 isolated from cow rumen is reported for being a potential candidate in hydrolysis of lignocellulosic plant biomass. Draft genome sequence generated 5.73 Mb data containing 4922 putative protein coding genes, of which 140 are annotated for glycoside hydrolases. P. polymyxa ND25 strain comprises diverse lignocellulolytic components, especially 12 cellulase along with 23 hemicellulases and 11 esterases, signifying its potential for lignocellulose hydrolysis. Subsequent enzyme assay exhibited the potential of strain to produce 0.49, 0.24 and 0.44 U/ml U/ml of endoglucanase, exoglucanase and β-glucosidase, respectively, utilizing sugarcane bagasse as the sole carbon source. This study signifies the efficient application of P. polymyxa ND25 for facilitating plant-biomass utilization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png 3 Biotech Springer Journals

Paenibacillus polymyxa ND25: candidate genome for lignocellulosic biomass utilization

Loading next page...
 
/lp/springer_journal/paenibacillus-polymyxa-nd25-candidate-genome-for-lignocellulosic-pu7t4jUlgO
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Biotechnology; Agriculture; Cancer Research; Bioinformatics; Stem Cells; Biomaterials
ISSN
2190-572X
eISSN
2190-5738
D.O.I.
10.1007/s13205-018-1274-3
Publisher site
See Article on Publisher Site

Abstract

Genome sequence of Paenibacillus polymyxa ND25 isolated from cow rumen is reported for being a potential candidate in hydrolysis of lignocellulosic plant biomass. Draft genome sequence generated 5.73 Mb data containing 4922 putative protein coding genes, of which 140 are annotated for glycoside hydrolases. P. polymyxa ND25 strain comprises diverse lignocellulolytic components, especially 12 cellulase along with 23 hemicellulases and 11 esterases, signifying its potential for lignocellulose hydrolysis. Subsequent enzyme assay exhibited the potential of strain to produce 0.49, 0.24 and 0.44 U/ml U/ml of endoglucanase, exoglucanase and β-glucosidase, respectively, utilizing sugarcane bagasse as the sole carbon source. This study signifies the efficient application of P. polymyxa ND25 for facilitating plant-biomass utilization.

Journal

3 BiotechSpringer Journals

Published: May 8, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off