Paenibacillus aquistagni sp. nov., isolated from an artificial lake accumulating industrial wastewater

Paenibacillus aquistagni sp. nov., isolated from an artificial lake accumulating industrial... Strain 11T was isolated from water of an artificial lake accumulating industrial wastewater on the outskirts of Celje, Slovenia. Phenotypic characterisation showed strain 11T to be a Gram-stain positive, spore forming bacterium. The 16S rRNA gene sequence identified strain 11T as a member of the genus Paenibacillus, closely related to Paenibacillus alvei (96.2%). Genomic similarity with P. alvei 29T was 73.1% (gANI), 70.2% (ANIb), 86.7% (ANIm) and 21.7 ± 2.3% (GGDC). The DNA G+C content of strain 11T was determined to be 47.5%. The predominant menaquinone of strain 11T was identified as MK-7 and the major fatty acid as anteiso-C15:0. The peptidoglycan was found to contain meso-diaminopimelic acid. In contrast to its close relatives P. alvei DSM 29T, Paenibacillus apiarius DSM 5581T and Paenibacillus profundus NRIC 0885T, strain 11T was found to be able to ferment d-fructose, d-mannose and d-xylose. A draft genome of strain 11T contains a cluster of genes associated with type IV pilin synthesis usually found in clostridia, and only sporadically in other Gram-positive bacteria. Genotypic, chemotaxonomic, physiological and biochemical characteristics of strain 11T presented in this study support the creation of a novel species within the genus Paenibacillus, for which the name Paenibacillus aquistagni sp. nov. is proposed, with strain 11T (=ZIM B1027T =LMG 29561T =CCM 8679T ) as the type strain. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Antonie van Leeuwenhoek Springer Journals

Paenibacillus aquistagni sp. nov., isolated from an artificial lake accumulating industrial wastewater

Loading next page...
 
/lp/springer_journal/paenibacillus-aquistagni-sp-nov-isolated-from-an-artificial-lake-pMfMODmVKv
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing Switzerland
Subject
Life Sciences; Microbiology; Medical Microbiology; Plant Sciences; Soil Science & Conservation
ISSN
0003-6072
eISSN
1572-9699
D.O.I.
10.1007/s10482-017-0891-x
Publisher site
See Article on Publisher Site

Abstract

Strain 11T was isolated from water of an artificial lake accumulating industrial wastewater on the outskirts of Celje, Slovenia. Phenotypic characterisation showed strain 11T to be a Gram-stain positive, spore forming bacterium. The 16S rRNA gene sequence identified strain 11T as a member of the genus Paenibacillus, closely related to Paenibacillus alvei (96.2%). Genomic similarity with P. alvei 29T was 73.1% (gANI), 70.2% (ANIb), 86.7% (ANIm) and 21.7 ± 2.3% (GGDC). The DNA G+C content of strain 11T was determined to be 47.5%. The predominant menaquinone of strain 11T was identified as MK-7 and the major fatty acid as anteiso-C15:0. The peptidoglycan was found to contain meso-diaminopimelic acid. In contrast to its close relatives P. alvei DSM 29T, Paenibacillus apiarius DSM 5581T and Paenibacillus profundus NRIC 0885T, strain 11T was found to be able to ferment d-fructose, d-mannose and d-xylose. A draft genome of strain 11T contains a cluster of genes associated with type IV pilin synthesis usually found in clostridia, and only sporadically in other Gram-positive bacteria. Genotypic, chemotaxonomic, physiological and biochemical characteristics of strain 11T presented in this study support the creation of a novel species within the genus Paenibacillus, for which the name Paenibacillus aquistagni sp. nov. is proposed, with strain 11T (=ZIM B1027T =LMG 29561T =CCM 8679T ) as the type strain.

Journal

Antonie van LeeuwenhoekSpringer Journals

Published: May 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off