Packaging of implantable accelerometers to monitor epicardial and endocardial wall motion

Packaging of implantable accelerometers to monitor epicardial and endocardial wall motion Acceleration signals, collected from the inner and the outer heart wall, offer a mean of assessing cardiac function during surgery. Accelerometric measurements can also provide detailed insights into myocardial motion during exploratory investigations. Two different implantable accelerometers to respectively record endocardial and epicardial vibrations, have been developed by packaging a commercially available capacitive transducer. The same coating materials have been deposited on the two devices to ensure biocompatibility of the implants: Parylene-C, medical epoxy and Polydimethylsiloxane (PDMS). The different position-specific requirements resulted in two very dissimilar sensor assemblies. The endocardial accelerometer, that measures accelerations from the inner surface of the heart during acute animal tests, is a 2 mm-radius hemisphere fixed on a polymethyl methacrylate (PMMA) rod to be inserted through the heart wall. The epicardial accelerometer, that monitors the motion of the outer surface of the heart, is a three-legged structure with a stretchable polytetrafluoroethylene (PTFE) reinforcement. This device can follow the continuous motion of the myocardium (the muscular tissue of the heart) during the cardiac cycle, without hindering its natural movement. Leakage currents lower than 1 μA have been measured during two weeks of continuous operation in saline. Both transducers have been used, during animal tests, to simultaneously record and compare acceleration signals from corresponding locations on the inner and the outer heart wall of a female sheep. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomedical Microdevices Springer Journals

Packaging of implantable accelerometers to monitor epicardial and endocardial wall motion

Loading next page...
 
/lp/springer_journal/packaging-of-implantable-accelerometers-to-monitor-epicardial-and-O2MBY8ZCZg
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Biomedical Engineering; Biological and Medical Physics, Biophysics; Nanotechnology; Engineering Fluid Dynamics
ISSN
1387-2176
eISSN
1572-8781
D.O.I.
10.1007/s10544-017-0199-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial