P r DB: managing and exploiting rich correlations in probabilistic databases

P r DB: managing and exploiting rich correlations in probabilistic databases Due to numerous applications producing noisy data, e.g., sensor data, experimental data, data from uncurated sources, information extraction, etc., there has been a surge of interest in the development of probabilistic databases. Most probabilistic database models proposed to date, however, fail to meet the challenges of real-world applications on two counts: (1) they often restrict the kinds of uncertainty that the user can represent; and (2) the query processing algorithms often cannot scale up to the needs of the application. In this work, we define a probabilistic database model, P r DB, that uses graphical models, a state-of-the-art probabilistic modeling technique developed within the statistics and machine learning community, to model uncertain data. We show how this results in a rich, complex yet compact probabilistic database model, which can capture the commonly occurring uncertainty models (tuple uncertainty, attribute uncertainty), more complex models (correlated tuples and attributes) and allows compact representation (shared and schema-level correlations). In addition, we show how query evaluation in P r DB translates into inference in an appropriately augmented graphical model. This allows us to easily use any of a myriad of exact and approximate inference algorithms developed within the graphical modeling community. While probabilistic inference provides a generic approach to solving queries, we show how the use of shared correlations, together with a novel inference algorithm that we developed based on bisimulation, can speed query processing significantly. We present a comprehensive experimental evaluation of the proposed techniques and show that even with a few shared correlations, significant speedups are possible. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

P r DB: managing and exploiting rich correlations in probabilistic databases

Loading next page...
Copyright © 2009 by Springer-Verlag
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial