P and T wave detection and delineation of ECG signal using differential evolution (DE) optimization strategy

P and T wave detection and delineation of ECG signal using differential evolution (DE)... Generally, P and T waves in an electrocardiogram (ECG) signal are lower in amplitude compared to amplitude of QRS complex and contaminated with noises from various sources. Due to these problems and lack of universal delineation rule, the automated detection and delineation of T and P waves (on, off, and peak position of T and P wave) in the ECG signal are challenging task. The effectiveness for detection of on, off, and peak position of T and P wave by using differential evolution (DE) algorithm with the denoising technique has been verified in this manuscript. The denoising operation of the ECG signal has been performed by extended Kalman smoother (EKS) framework. DE algorithm is used for selection of optimized width and phase of five waves of the ECG signal. These parameters are used in EKS for initialization of the process noise covariance matrix and also development of the state equation. The new algorithm (an intelligent process of searching and subtraction) for detection of on, off and peak location of P and T waves without using amplitude threshold is developed by using the optimized parameters computed by the DE algorithm and denoised ECG signal with the help of the EKS framework. The effectiveness of the proposed technique has been validated using real-time QT database. Our proposed method shows better sensitivity, predicitvity and accuracy compared to other well-known methods for detection of on, off, peak location of P and T wave. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Australasian Physical & Engineering Sciences in Medicine Springer Journals

P and T wave detection and delineation of ECG signal using differential evolution (DE) optimization strategy

Loading next page...
 
/lp/springer_journal/p-and-t-wave-detection-and-delineation-of-ecg-signal-using-Mcc2xH7cPu
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Australasian College of Physical Scientists and Engineers in Medicine
Subject
Biomedicine; Biomedicine, general; Biological and Medical Physics, Biophysics; Medical and Radiation Physics; Biomedical Engineering
ISSN
0158-9938
eISSN
1879-5447
D.O.I.
10.1007/s13246-018-0629-8
Publisher site
See Article on Publisher Site

Abstract

Generally, P and T waves in an electrocardiogram (ECG) signal are lower in amplitude compared to amplitude of QRS complex and contaminated with noises from various sources. Due to these problems and lack of universal delineation rule, the automated detection and delineation of T and P waves (on, off, and peak position of T and P wave) in the ECG signal are challenging task. The effectiveness for detection of on, off, and peak position of T and P wave by using differential evolution (DE) algorithm with the denoising technique has been verified in this manuscript. The denoising operation of the ECG signal has been performed by extended Kalman smoother (EKS) framework. DE algorithm is used for selection of optimized width and phase of five waves of the ECG signal. These parameters are used in EKS for initialization of the process noise covariance matrix and also development of the state equation. The new algorithm (an intelligent process of searching and subtraction) for detection of on, off and peak location of P and T waves without using amplitude threshold is developed by using the optimized parameters computed by the DE algorithm and denoised ECG signal with the help of the EKS framework. The effectiveness of the proposed technique has been validated using real-time QT database. Our proposed method shows better sensitivity, predicitvity and accuracy compared to other well-known methods for detection of on, off, peak location of P and T wave.

Journal

Australasian Physical & Engineering Sciences in MedicineSpringer Journals

Published: Feb 26, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial