Oxygen dependence of NO adsorption on Hollandite-type KxGaxSn8–x O16 thin film

Oxygen dependence of NO adsorption on Hollandite-type KxGaxSn8–x O16 thin film Thin films of hollandite-type K1.9Ga1.9Sn6.1O16 (KGSO) were prepared by a spin-coating method. The films were colorless and transparent, 100-150 nm thick, and consisted of KGSO fine particles of about 20 nm in average size. The adsorption behavior of NO on the KGSO surface was examined by diffuse reflectance infrared fourier transform (DRIFTS). The KGSO was preheated at 968 K in a gas mixture of N2 and O2 prior to NO adsorption. As the oxygen ratio in the gas mixture increased up to 40%, absorption bands emerged and became stronger around 1400 cm-1. Those bands were assigned to NO2 species in chelating and nitrito form. It was found that the coexistence of oxygen remarkably improves the adsorption ability of NO on KGSO surface. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Oxygen dependence of NO adsorption on Hollandite-type KxGaxSn8–x O16 thin film

Loading next page...
 
/lp/springer_journal/oxygen-dependence-of-no-adsorption-on-hollandite-type-kxgaxsn8-x-o16-A0aTVlLGde
Publisher
Brill Academic Publishers
Copyright
Copyright © 2002 by VSP 2002
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856702760346914
Publisher site
See Article on Publisher Site

Abstract

Thin films of hollandite-type K1.9Ga1.9Sn6.1O16 (KGSO) were prepared by a spin-coating method. The films were colorless and transparent, 100-150 nm thick, and consisted of KGSO fine particles of about 20 nm in average size. The adsorption behavior of NO on the KGSO surface was examined by diffuse reflectance infrared fourier transform (DRIFTS). The KGSO was preheated at 968 K in a gas mixture of N2 and O2 prior to NO adsorption. As the oxygen ratio in the gas mixture increased up to 40%, absorption bands emerged and became stronger around 1400 cm-1. Those bands were assigned to NO2 species in chelating and nitrito form. It was found that the coexistence of oxygen remarkably improves the adsorption ability of NO on KGSO surface.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial