Oxidative Stress-Induced Membrane Shedding from RBCs is Ca Flux-Mediated and Affects Membrane Lipid Composition

Oxidative Stress-Induced Membrane Shedding from RBCs is Ca Flux-Mediated and Affects Membrane... Phosphatidylserine (PS), which is normally localized in the cytoplasmic leaflet of the membrane, undergoes externalization during aging or trauma of red blood cells (RBCs). A fraction of this PS is shed into the extracellular milieu. Both PS externalization and shedding are modulated by the oxidative state of the cells. In the present study we investigated the effect of calcium (Ca) flux on oxidative stress-induced membrane distribution of PS and its shedding and on the membrane composition and functions. Normal human RBCs were treated with the oxidant t-butyl hydroperoxide, and thalassemic RBCs, which are under oxidative stress, were treated with the antioxidant vitamin C or N-acetylcystein. The intracellular Ca content was modulated by the Ca ionophore A23187 and by varying the Ca concentration in the medium. Ca flux was measured by Fluo-3, PS externalization and shedding were measured by quantitative flow cytometry and membrane composition was measured by 1H-NMR analysis of the cholesterol and phospholipids. The results indicated that increasing the inward Ca flux induced PS externalization and shedding, which in turn increased the membrane cholesterol/phospholipid ratio and thereby increased the RBC osmotic resistance. In addition, these processes modulated the susceptibility of RBCs to undergo phagocytosis by macrophages; while PS externalization increased phagocytosis, the shed PS prevented it. These results indicate that PS redistribution and shedding from RBCs, which are mediated by increased calcium, have profound effects on the membrane composition and properties and, thus, may control the fate of RBCs under physiological and pathological conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Oxidative Stress-Induced Membrane Shedding from RBCs is Ca Flux-Mediated and Affects Membrane Lipid Composition

Loading next page...
 
/lp/springer_journal/oxidative-stress-induced-membrane-shedding-from-rbcs-is-ca-flux-zgysf6UXW1
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-011-9345-y
Publisher site
See Article on Publisher Site

Abstract

Phosphatidylserine (PS), which is normally localized in the cytoplasmic leaflet of the membrane, undergoes externalization during aging or trauma of red blood cells (RBCs). A fraction of this PS is shed into the extracellular milieu. Both PS externalization and shedding are modulated by the oxidative state of the cells. In the present study we investigated the effect of calcium (Ca) flux on oxidative stress-induced membrane distribution of PS and its shedding and on the membrane composition and functions. Normal human RBCs were treated with the oxidant t-butyl hydroperoxide, and thalassemic RBCs, which are under oxidative stress, were treated with the antioxidant vitamin C or N-acetylcystein. The intracellular Ca content was modulated by the Ca ionophore A23187 and by varying the Ca concentration in the medium. Ca flux was measured by Fluo-3, PS externalization and shedding were measured by quantitative flow cytometry and membrane composition was measured by 1H-NMR analysis of the cholesterol and phospholipids. The results indicated that increasing the inward Ca flux induced PS externalization and shedding, which in turn increased the membrane cholesterol/phospholipid ratio and thereby increased the RBC osmotic resistance. In addition, these processes modulated the susceptibility of RBCs to undergo phagocytosis by macrophages; while PS externalization increased phagocytosis, the shed PS prevented it. These results indicate that PS redistribution and shedding from RBCs, which are mediated by increased calcium, have profound effects on the membrane composition and properties and, thus, may control the fate of RBCs under physiological and pathological conditions.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 23, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off