Oxidative dehydrogenation of n-butenes to 1,3-butadiene over BiMoFe0.65P x catalysts: effect of phosphorous contents

Oxidative dehydrogenation of n-butenes to 1,3-butadiene over BiMoFe0.65P x catalysts: effect of... A series of BiMoFe0.65P x oxide catalysts with varying phosphorous contents from 0.0 to 0.6 mol ratio were prepared by a co-precipitation method, and oxidative dehydrogenation (ODH) was carried out to produce 1,3-butadiene (BD) from n-butenes. The physico-chemical properties of the oxide catalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 sorption, and NH3 and 1-butene temperature-programmed desorption (TPD). Among the catalysts studied here, BiMoFe0.65P0.1 oxide catalyst showed the highest conversion and selectivity to BD. From the result of 1-butene TPD, the higher catalytic activity is related to the amount of weakly bounded intermediate and the desorbing temperature of strongly bounded intermediates. Also, the higher catalytic activity likely originates from the acidity of the BiMoFe0.65P0.1 oxide catalyst; its acidity was higher than that of phosphorous-free oxide catalyst and further contained other oxide catalysts. BiMoFe0.65P0.1 oxide catalyst is stable and no significant deactivation for 100 h ODH reaction was shown. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Oxidative dehydrogenation of n-butenes to 1,3-butadiene over BiMoFe0.65P x catalysts: effect of phosphorous contents

Loading next page...
 
/lp/springer_journal/oxidative-dehydrogenation-of-n-butenes-to-1-3-butadiene-over-bimofe0-NvihAVXvQG
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Physical Chemistry; Inorganic Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0377-9
Publisher site
See Article on Publisher Site

Abstract

A series of BiMoFe0.65P x oxide catalysts with varying phosphorous contents from 0.0 to 0.6 mol ratio were prepared by a co-precipitation method, and oxidative dehydrogenation (ODH) was carried out to produce 1,3-butadiene (BD) from n-butenes. The physico-chemical properties of the oxide catalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 sorption, and NH3 and 1-butene temperature-programmed desorption (TPD). Among the catalysts studied here, BiMoFe0.65P0.1 oxide catalyst showed the highest conversion and selectivity to BD. From the result of 1-butene TPD, the higher catalytic activity is related to the amount of weakly bounded intermediate and the desorbing temperature of strongly bounded intermediates. Also, the higher catalytic activity likely originates from the acidity of the BiMoFe0.65P0.1 oxide catalyst; its acidity was higher than that of phosphorous-free oxide catalyst and further contained other oxide catalysts. BiMoFe0.65P0.1 oxide catalyst is stable and no significant deactivation for 100 h ODH reaction was shown.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 29, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off