Oxidative dehydrogenation of n-butane on nano-carbon catalysts having graphitic structures

Oxidative dehydrogenation of n-butane on nano-carbon catalysts having graphitic structures The catalytic activity of well-nanostructured carbon, for example glassy carbon spheres, SWCNT, graphene, and graphite, has been demonstrated in the oxidative dehydrogenation (ODH) of butane to obtain olefins. The catalytic performance of the carbon samples was stable, with prolonged reaction time. The proportion of butenes in the product decreased as the reaction temperature increased, whereas selectivity for ethene and propene increased with increasing temperature. Pd-containing carbon nanofibers (CNF) had superior selectivity for butadiene formation than Pd free CNF catalyst. Carbon with graphitic structures was highly selective for propylene and butenes without severe combustion in ODH of butane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Oxidative dehydrogenation of n-butane on nano-carbon catalysts having graphitic structures

Loading next page...
 
/lp/springer_journal/oxidative-dehydrogenation-of-n-butane-on-nano-carbon-catalysts-having-T5tPeiIQZn
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Physical Chemistry; Inorganic Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0380-1
Publisher site
See Article on Publisher Site

Abstract

The catalytic activity of well-nanostructured carbon, for example glassy carbon spheres, SWCNT, graphene, and graphite, has been demonstrated in the oxidative dehydrogenation (ODH) of butane to obtain olefins. The catalytic performance of the carbon samples was stable, with prolonged reaction time. The proportion of butenes in the product decreased as the reaction temperature increased, whereas selectivity for ethene and propene increased with increasing temperature. Pd-containing carbon nanofibers (CNF) had superior selectivity for butadiene formation than Pd free CNF catalyst. Carbon with graphitic structures was highly selective for propylene and butenes without severe combustion in ODH of butane.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 24, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off