Oxidation of Composite Materials Based on Aluminum Nitride

Oxidation of Composite Materials Based on Aluminum Nitride A method for studying the heat resistance of composite aluminum nitride-based ceramic materials in air at 1073 – 1273 K is developed that allows the change in mass to be measured with an accuracy of 0.15 – 0.17 mg. The interaction between AlN-based composite materials and a phosphate binder (H3PO4) is studied and compared with hot-pressed specimens. A mechanism for the effect of the binder on the kinetics of oxidation is proposed. The relatively low activation energies (152 and 205 kJ/mole) suggest that the oxidation process is mainly determined by the diffusion of aluminum ions through the α-Al2O3 film. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Refractories and Industrial Ceramics Springer Journals

Oxidation of Composite Materials Based on Aluminum Nitride

Loading next page...
 
/lp/springer_journal/oxidation-of-composite-materials-based-on-aluminum-nitride-POUMa9Gk2b
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2002 by Plenum Publishing Corporation
Subject
Materials Science; Characterization and Evaluation of Materials; Materials Science, general; Ceramics, Glass, Composites, Natural Materials
ISSN
1083-4877
eISSN
1573-9139
D.O.I.
10.1023/A:1019611313366
Publisher site
See Article on Publisher Site

Abstract

A method for studying the heat resistance of composite aluminum nitride-based ceramic materials in air at 1073 – 1273 K is developed that allows the change in mass to be measured with an accuracy of 0.15 – 0.17 mg. The interaction between AlN-based composite materials and a phosphate binder (H3PO4) is studied and compared with hot-pressed specimens. A mechanism for the effect of the binder on the kinetics of oxidation is proposed. The relatively low activation energies (152 and 205 kJ/mole) suggest that the oxidation process is mainly determined by the diffusion of aluminum ions through the α-Al2O3 film.

Journal

Refractories and Industrial CeramicsSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off