Overproduction of stromal ferredoxin:NADPH oxidoreductase in H2O2-accumulating Brassica napus leaf protoplasts

Overproduction of stromal ferredoxin:NADPH oxidoreductase in H2O2-accumulating Brassica napus... The isolation of Brassica napus leaf protoplasts induces reactive oxygen species generation and accumulation in the chloroplasts. An activated isoform of NADPH oxidase-like protein was detected in the protoplasts and the protoplast chloroplasts. The purpose of this study is to define the NADH oxidase-like activities in the H2O2-accumulating protoplast chloroplasts. Proteomic analysis of this protein revealed an isoform of ferredoxin:NADPH oxidoreductase (FNR1). While leaves highly expressed the LFNR1 transcript, protoplasts decreased the expression significantly. The protoplast chloroplasts predominantly expressed soluble FNR1 proteins. While the albino leaves of white kale (Brassica oleracea var. acephala f. tricolor cv. white pigeon) expressed FNR1 protein at the same level as B. napus leaves, the protoplasts of albino leaves displayed reduced FNR1 expression. The albino leaf protoplasts of white kale generated and accumulated H2O2 in the cytoplasm and on the plasma membrane. Intracellular pH showed that the chloroplasts were acidic, which suggest that excess H+ was generated in chloroplast stroma. NADPH content of the protoplast chloroplasts increased by over sixfold during the isolation of protoplasts. This study reports a possibility of mediating electrons to oxygen by an overproduced soluble FNR, and suggests that the FNR has a function in utilizing any excess reducing power of NADPH. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Overproduction of stromal ferredoxin:NADPH oxidoreductase in H2O2-accumulating Brassica napus leaf protoplasts

Loading next page...
 
/lp/springer_journal/overproduction-of-stromal-ferredoxin-nadph-oxidoreductase-in-h2o2-GFpU0uE6CB
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-014-0252-3
Publisher site
See Article on Publisher Site

Abstract

The isolation of Brassica napus leaf protoplasts induces reactive oxygen species generation and accumulation in the chloroplasts. An activated isoform of NADPH oxidase-like protein was detected in the protoplasts and the protoplast chloroplasts. The purpose of this study is to define the NADH oxidase-like activities in the H2O2-accumulating protoplast chloroplasts. Proteomic analysis of this protein revealed an isoform of ferredoxin:NADPH oxidoreductase (FNR1). While leaves highly expressed the LFNR1 transcript, protoplasts decreased the expression significantly. The protoplast chloroplasts predominantly expressed soluble FNR1 proteins. While the albino leaves of white kale (Brassica oleracea var. acephala f. tricolor cv. white pigeon) expressed FNR1 protein at the same level as B. napus leaves, the protoplasts of albino leaves displayed reduced FNR1 expression. The albino leaf protoplasts of white kale generated and accumulated H2O2 in the cytoplasm and on the plasma membrane. Intracellular pH showed that the chloroplasts were acidic, which suggest that excess H+ was generated in chloroplast stroma. NADPH content of the protoplast chloroplasts increased by over sixfold during the isolation of protoplasts. This study reports a possibility of mediating electrons to oxygen by an overproduced soluble FNR, and suggests that the FNR has a function in utilizing any excess reducing power of NADPH.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 26, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off