Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice

Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice... We describe here the isolation and characterization of OsiSAP8, a member of stress Associated protein (SAP) gene family from rice characterized by the presence of A20 and AN1 type Zinc finger domains. OsiSAP8 is a multiple stress inducible gene, induced by various stresses, namely heat, cold, salt, desiccation, submergence, wounding, heavy metals as well as stress hormone Abscisic acid. OsiSAP8 protein fused to GFP was localized towards the periphery of the cells in the epidermal cells of infiltrated Nicotiana benthamiana leaves. Yeast two hybrid analysis revealed that A20 and AN1 type zinc-finger domains of OsiSAP8 interact with each other. Overexpression of the gene in both transgenic tobacco and rice conferred tolerance to salt, drought and cold stress at seed germination/seedling stage as reflected by percentage of germination and gain in fresh weight after stress recovery. Transgenic rice plants were tolerant to salt and drought during anthesis stage without any yield penalty as compared to unstressed transgenic plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice

Loading next page...
 
/lp/springer_journal/overexpression-of-osisap8-a-member-of-stress-associated-protein-sap-SA0p6XEon1
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-007-9284-2
Publisher site
See Article on Publisher Site

Abstract

We describe here the isolation and characterization of OsiSAP8, a member of stress Associated protein (SAP) gene family from rice characterized by the presence of A20 and AN1 type Zinc finger domains. OsiSAP8 is a multiple stress inducible gene, induced by various stresses, namely heat, cold, salt, desiccation, submergence, wounding, heavy metals as well as stress hormone Abscisic acid. OsiSAP8 protein fused to GFP was localized towards the periphery of the cells in the epidermal cells of infiltrated Nicotiana benthamiana leaves. Yeast two hybrid analysis revealed that A20 and AN1 type zinc-finger domains of OsiSAP8 interact with each other. Overexpression of the gene in both transgenic tobacco and rice conferred tolerance to salt, drought and cold stress at seed germination/seedling stage as reflected by percentage of germination and gain in fresh weight after stress recovery. Transgenic rice plants were tolerant to salt and drought during anthesis stage without any yield penalty as compared to unstressed transgenic plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 18, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off