Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice

Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance... Short-chain peptides play important roles in plant development and responses to abiotic and biotic stresses. Here, we characterized a gene of unknown function termed OsDT11, which encodes an 88 amino acid short-chain peptide and belongs to the cysteine-rich peptide family. It was found that the expression of OsDT11 can be activated by polyethylene glycol (PEG) treatment. Compared with wild-type lines, the OsDT11-overexpression lines displayed dramatically enhanced tolerance to drought and had reduced water loss, reduced stomatal density, and an increased the concentration of abscisic acid (ABA). The suppression of OsDT11 expression resulted in an increased sensitivity to drought compared to wild-type expression. Several drought-related genes, including genes encoding abscisic acid (ABA) signaling markers, were also strongly induced in the OsDT11-overexpressing lines. Moreover, the expression of OsDT11 was repressed in ABA-insensitive mutant Osbzip23 and Os2H16 RNAi lines. These results suggest that OsDT11-mediated drought tolerance may be dependent on the ABA signaling pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice

Loading next page...
 
/lp/springer_journal/overexpression-of-osdt11-which-encodes-a-novel-cysteine-rich-peptide-tPPG0bHDVI
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-016-0544-x
Publisher site
See Article on Publisher Site

Abstract

Short-chain peptides play important roles in plant development and responses to abiotic and biotic stresses. Here, we characterized a gene of unknown function termed OsDT11, which encodes an 88 amino acid short-chain peptide and belongs to the cysteine-rich peptide family. It was found that the expression of OsDT11 can be activated by polyethylene glycol (PEG) treatment. Compared with wild-type lines, the OsDT11-overexpression lines displayed dramatically enhanced tolerance to drought and had reduced water loss, reduced stomatal density, and an increased the concentration of abscisic acid (ABA). The suppression of OsDT11 expression resulted in an increased sensitivity to drought compared to wild-type expression. Several drought-related genes, including genes encoding abscisic acid (ABA) signaling markers, were also strongly induced in the OsDT11-overexpressing lines. Moreover, the expression of OsDT11 was repressed in ABA-insensitive mutant Osbzip23 and Os2H16 RNAi lines. These results suggest that OsDT11-mediated drought tolerance may be dependent on the ABA signaling pathway.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off