Overexpression of Na+/K+-ATPase Parallels the Increase in Sodium Transport and Potassium Recycling in an In Vitro Model of Proximal Tubule Cellular Ageing

Overexpression of Na+/K+-ATPase Parallels the Increase in Sodium Transport and Potassium... Na+/K+-ATPase plays a key role in the transport of Na+ throughout the nephron, but ageing appears to be accompanied by changes in the regulation and localization of the pump. In the present study, we examined the effect of in vitro cell ageing on the transport of Na+ and K+ ions in opossum kidney (OK) cells in culture. Cells were aged by repeated passing, and Na+/K+-ATPase activity and K+ conductance were evaluated using electrophysiological methods. Na+K+-ATPase α1– and β1-subunit expression was quantified by Western blot techniques. Na+/H+ exchanger activity, changes in membrane potential, cell viability, hydrogen peroxide production and cellular proliferation were determined using fluorimetric assays. In vitro cell ageing is accompanied by an increase in transepithelial Na+ transport, which results from an increase in the number of Na+/K+-ATPase α1- and β1-subunits, in the membrane. Increases in Na+/K+-ATPase activity were accompanied by increases in K+ conductance as a result of functional coupling between Na+/K+-ATPase and basolateral K+ channels. Cell depolarization induced by both KCl and ouabain was more pronounced in aged cells. No changes in Na+/H+ exchanger activity were observed. H2O2 production was increased in aged cells, but exposure for 5 days to 1 and 10 μM of H2O2 had no effect on Na+/K+-ATPase expression. Ouabain (100 nM) increased α1-subunit, but not β1-subunit, Na+/K+-ATPase expression in aged cells only. These cells constitute an interesting model for the study of renal epithelial cell ageing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Overexpression of Na+/K+-ATPase Parallels the Increase in Sodium Transport and Potassium Recycling in an In Vitro Model of Proximal Tubule Cellular Ageing

Loading next page...
 
/lp/springer_journal/overexpression-of-na-k-atpase-parallels-the-increase-in-sodium-TIY7oLAhSo
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-005-7017-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial