Overexpression of a cytoplasm-localized allene oxide synthase promotes the wound-induced accumulation of jasmonic acid in transgenic tobacco

Overexpression of a cytoplasm-localized allene oxide synthase promotes the wound-induced... Jasmonic acid (JA) is involved in regulating the expression of certain plant defense genes and response to various stresses. JA biosynthesis is hypothesized to occur both in chloroplasts and the cytoplasm. In order to test whether or not a cytosol-localized allene oxide synthase (AOS) can promote JA biosynthesis, transgenic tobacco plants containing a flax AOS cDNA without a chloroplast transit sequence under the control of a tetracycline-inducible promoter were generated. Induction of the flax AOS gene in transgenic plants with chlor-tetracycline (Tc) led to the expression of the flax AOS mRNA and protein, which resulted in high level of metabolism of 13(S)-hydroperoxyoctadecatrienoic acid (13(S)-HPOT) and formation of 12-oxo-phytodienoic acid (12-O-PDA). Subcellular fractionation demonstrated that the flax AOS protein and activity were associated with the cytosol. Overexpression of the flax AOS in induced transgenic plants did not increase JA levels in healthy, undamaged leaf tissues. However, in wounded tissues overexpressing a flax AOS, levels of JA and the transcript of a pathogenesis-related gene (PR-1) dramatically increased when compared to those not expressing the flax AOS. Analysis of the release of wound-induced C6 volatiles showed that the level of (Z)-3-hexen-1-ol decreased about 30% due to overexpression of the cytoplasm-localized AOS, while (Z)-3-hexenal and (Z)-3-hexenyl acetate appeared not to be significantly altered. The data indicate that cytoplasmic AOS responds to wounding by increasing the levels of the wound-induced JA which in turn directly or indirectly enhances the expression of plant defense genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Overexpression of a cytoplasm-localized allene oxide synthase promotes the wound-induced accumulation of jasmonic acid in transgenic tobacco

Loading next page...
 
/lp/springer_journal/overexpression-of-a-cytoplasm-localized-allene-oxide-synthase-promotes-kshjPEMJbO
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006253927431
Publisher site
See Article on Publisher Site

Abstract

Jasmonic acid (JA) is involved in regulating the expression of certain plant defense genes and response to various stresses. JA biosynthesis is hypothesized to occur both in chloroplasts and the cytoplasm. In order to test whether or not a cytosol-localized allene oxide synthase (AOS) can promote JA biosynthesis, transgenic tobacco plants containing a flax AOS cDNA without a chloroplast transit sequence under the control of a tetracycline-inducible promoter were generated. Induction of the flax AOS gene in transgenic plants with chlor-tetracycline (Tc) led to the expression of the flax AOS mRNA and protein, which resulted in high level of metabolism of 13(S)-hydroperoxyoctadecatrienoic acid (13(S)-HPOT) and formation of 12-oxo-phytodienoic acid (12-O-PDA). Subcellular fractionation demonstrated that the flax AOS protein and activity were associated with the cytosol. Overexpression of the flax AOS in induced transgenic plants did not increase JA levels in healthy, undamaged leaf tissues. However, in wounded tissues overexpressing a flax AOS, levels of JA and the transcript of a pathogenesis-related gene (PR-1) dramatically increased when compared to those not expressing the flax AOS. Analysis of the release of wound-induced C6 volatiles showed that the level of (Z)-3-hexen-1-ol decreased about 30% due to overexpression of the cytoplasm-localized AOS, while (Z)-3-hexenal and (Z)-3-hexenyl acetate appeared not to be significantly altered. The data indicate that cytoplasmic AOS responds to wounding by increasing the levels of the wound-induced JA which in turn directly or indirectly enhances the expression of plant defense genes.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 19, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off