Over-Expression of an Arabidopsis Zinc Transporter in Hordeum Vulgare Increases Short-Term Zinc Uptake after Zinc Deprivation and Seed Zinc Content

Over-Expression of an Arabidopsis Zinc Transporter in Hordeum Vulgare Increases Short-Term Zinc... Increasing the zinc content of cereal grains will be important for improving human nutrition. Improved plant zinc efficiency will lead to increased yields when available zinc is limiting plant growth. The aim of our work was to test how the over-expression of zinc transporters in cereals affects plant growth, seed mineral content, and zinc transport rates. Known zinc transporters from Arabidopsis were over-expressed in Hordeum vulgare cv. Golden Promise by means of a ubiquitin promoter. Multiple transgenic lines were obtained, and the locus number and expression levels were verified. Transgenic lines were tested in long-term growth and short-term uptake experiments. Seeds from transgenic lines grown in soil had higher zinc and iron contents than controls. Short-term uptake rates were higher in the transgenic lines after zinc deprivation. Resupply of zinc after a period of deprivation resulted in the rapid decrease in zinc uptake even in transgenic lines in which a zinc transporter gene was constitutively expressed. Similar to processes in yeast and Arabidopsis, we hypothesize that this rapid decrease in zinc transport activity may be caused by the degradation of transporters in response to zinc-sufficient conditions. In the long-term growth experiments, there were no significant differences between transgenic and control lines in leaf zinc content or shoot biomass under zinc-sufficient or -deficient conditions. However, root-to-shoot ratios were higher in the transgenic plants grown under low-zinc conditions; this could impact zinc acquisition under field conditions. Increased seed zinc and iron content by over-expression of a zinc transporter provides a new strategy for increasing the micronutrient content of cereals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Over-Expression of an Arabidopsis Zinc Transporter in Hordeum Vulgare Increases Short-Term Zinc Uptake after Zinc Deprivation and Seed Zinc Content

Loading next page...
Kluwer Academic Publishers
Copyright © 2004 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial