Outlier identification of soil phosphorus and its implication for spatial structure modeling

Outlier identification of soil phosphorus and its implication for spatial structure modeling Outliers are classified as global outliers and spatial outliers. Up to now, there is little information about the outliers especially the spatial outliers and their influence on the spatial structure modeling of soil properties. A total of 537 soil samples were collected based on a 30 × 30 m grid in a permanent dairy farm in southeast Ireland. Graphic methods of histogram and box plot combined with Moran’s I were applied to detect the outliers of soil phosphorus (P). Sixteen outliers (5 global outliers and 11 spatial outliers) of soil P were found in the study area. Compared to the raw data, the data with global outliers excluded always had the larger global Moran’s I value indicating a stronger spatial autocorrelation. Clear spatial clusters (High–High and Low–Low clusters) were observed based on local Moran’s I. The High–High spatial clusters were located around the main farm yard and near the traffic route due to more intensive management by farmers. The Low–Low spatial clusters were mainly close to the river. For these areas, P fertilizer or slurry should be applied for healthy grass growth. The dataset with outliers excluded had a reliable semi-variogram model with a low nugget/sill ratio (32.4 %), which was closed to its corresponding transformed data (30.5 %). The cross-validation results revealed that the dataset without outliers had the strongest linear regression model (r = 0.768), indicating that the outliers played an important role in the spatial structure modeling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Outlier identification of soil phosphorus and its implication for spatial structure modeling

Loading next page...
Springer US
Copyright © 2015 by Springer Science+Business Media New York
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


  • Variability in contamination by heavy metals: sampling implications
    Andronikov, SV; Davidson, DA; Spiers, RB
  • Local indicators of spatial association-LISA
    Anselin, L

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial