Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry

Out-of-focus effects on particle image visibility and correlation in microscopic particle image... In microscopic particle image velocimetry (μPIV) the entire volume of a flowfield is illuminated, resulting in all of the particles in the field of view contributing to the image, either by forming discrete particle images or contributing to a background glow. The theory of PIV is expanded to encompass this situation. Equations are derived for a particle image intensity function that yields image diameter and intensity as a function of distance from the object plane, as well as an equation for a new quantity, termed particle visibility. The effect of changing experimental parameters is discussed. Next, the contribution of out-of-focus particles to the correlation function is addressed. A weighting function that can be used to calculate either velocity measurement bias or the distance from the object plane beyond which particles no longer significantly contribute to the correlation function is derived. A new experimental parameter, the depth of correlation, is then introduced, and its dependence on experimental parameters is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry

Loading next page...
 
/lp/springer_journal/out-of-focus-effects-on-particle-image-visibility-and-correlation-in-zRZbxPQU5V
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480070018
Publisher site
See Article on Publisher Site

Abstract

In microscopic particle image velocimetry (μPIV) the entire volume of a flowfield is illuminated, resulting in all of the particles in the field of view contributing to the image, either by forming discrete particle images or contributing to a background glow. The theory of PIV is expanded to encompass this situation. Equations are derived for a particle image intensity function that yields image diameter and intensity as a function of distance from the object plane, as well as an equation for a new quantity, termed particle visibility. The effect of changing experimental parameters is discussed. Next, the contribution of out-of-focus particles to the correlation function is addressed. A weighting function that can be used to calculate either velocity measurement bias or the distance from the object plane beyond which particles no longer significantly contribute to the correlation function is derived. A new experimental parameter, the depth of correlation, is then introduced, and its dependence on experimental parameters is discussed.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 31, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off