OsZIP5 is a plasma membrane zinc transporter in rice

OsZIP5 is a plasma membrane zinc transporter in rice Zinc is essential for normal plant growth and development. To understand its transport in rice, we characterized OsZIP5, which is inducible under Zn deficiency. OsZIP5 complemented the growth defect of a yeast Zn-uptake mutant, indicating that OsZIP5 is a Zn transporter. The OsZIP5-GFP fusion protein was localized to the plasma membrane. Transgenic plants overexpressing the gene grew less well. Overexpression of the gene decreased the Zn concentration in shoots, but caused it to rise in the roots. Knockout plants showed no visible phenotypic changes under either normal or deficient conditions. However, they were tolerant to excess Zn and contained less Zn. In contrast, overexpressing transgenics were sensitive to excess Zn. These results indicate that OsZIP5 plays a role in Zn distribution within rice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

OsZIP5 is a plasma membrane zinc transporter in rice

Loading next page...
 
/lp/springer_journal/oszip5-is-a-plasma-membrane-zinc-transporter-in-rice-GNF8Z8BPw1
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9637-0
Publisher site
See Article on Publisher Site

Abstract

Zinc is essential for normal plant growth and development. To understand its transport in rice, we characterized OsZIP5, which is inducible under Zn deficiency. OsZIP5 complemented the growth defect of a yeast Zn-uptake mutant, indicating that OsZIP5 is a Zn transporter. The OsZIP5-GFP fusion protein was localized to the plasma membrane. Transgenic plants overexpressing the gene grew less well. Overexpression of the gene decreased the Zn concentration in shoots, but caused it to rise in the roots. Knockout plants showed no visible phenotypic changes under either normal or deficient conditions. However, they were tolerant to excess Zn and contained less Zn. In contrast, overexpressing transgenics were sensitive to excess Zn. These results indicate that OsZIP5 plays a role in Zn distribution within rice.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 25, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off