OsPIPK1, a Rice Phosphatidylinositol Monophosphate Kinase, Regulates Rice Heading by Modifying the Expression of Floral Induction Genes

OsPIPK1, a Rice Phosphatidylinositol Monophosphate Kinase, Regulates Rice Heading by Modifying... A rice gene, OsPIPK1, encoding a 792-aa putative phosphatidylinositol 4-phosphate 5-kinase (PIPK), was identified and characterized. Comparison between the cDNA and genomic sequences revealed the presence of 10 exons (39–1050 bp) and 9 introns (88–745 bp) in OsPIPK1 gene. The deduced amino acid sequence of OsPIPK1 contains a lipid kinase domain that is highly homologous to those of previously isolated PIPKs, and structural analysis revealed the intriguing presence of multiple MORN motifs at the N-terminus. The MORN motifs have also been detected in PIPKs from Arabidopsis thaliana and Oryza sativa, but not in the well-characterized PIPKs from animal and yeast cells. RT-PCR analysis indicated that OsPIPK1 was expressed almost constitutively in roots, shoots, stems, leaves and flowers, and up-regulated following treatment with plant hormones or application of various stresses. An antisense transgenic strategy was used to suppress the expression of OsPIPK1, and homozygous transgenic plants showed earlier heading (7–14 days earlier) than control plants, suggesting that OsPIPK1 negatively regulates floral initiation. This was further confirmed by morphologic observation showing earlier floral development in antisense plants, as well as leaf emergence measurement indicating delayed leaf development under OsPIPK1 deficiency, a common phenotype observed with earlier flowering. RT-PCR analysis and cDNA chip technology were used to examine transcripts of various genes in the transgenic plants and the results showed altered transcriptions of several flowering-time or -identity related genes, suggesting that OsPIPK1 is involved in rice heading through regulation of floral induction genes, signaling and metabolic pathways. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

OsPIPK1, a Rice Phosphatidylinositol Monophosphate Kinase, Regulates Rice Heading by Modifying the Expression of Floral Induction Genes

Loading next page...
 
/lp/springer_journal/ospipk1-a-rice-phosphatidylinositol-monophosphate-kinase-regulates-wEcYydBt8Z
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000028796.14336.24
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial