OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long days in the absence of phytochrome B

OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long... Phytochromes recognize light signals and control diverse developmental processes. In rice, all three phytochrome genes—OsphyA, OsphyB, and OsphyC—are involved in regulating flowering time. We investigated the role of OsPhyA by comparing the osphyA osphyB double mutant to an osphyB single mutant. Plants of the double mutant flowered later than the single under short days (SD) but bolted earlier under long days (LD). Under SD, this delayed-flowering phenotype was primarily due to the decreased expression of Oryza sativa GIGANTEA (OsGI), which controls three flowering activators: Heading date 1 (Hd1), OsMADS51, and Oryza sativa Indeterminate 1 (OsId1). Under LD, although the expression of several repressors, e.g., Hd1, Oryza sativa CONSTANS-like 4 (OsCOL4), and AP2 genes, was affected in the double mutant, that of Grain number, plant height and heading date 7 (Ghd7) was the most significantly reduced. These results indicated that OsPhyA influences flowering time mainly by affecting the expression of OsGI under SD and Ghd7 under LD when phytochrome B is absent. We also demonstrated that far-red light delays flowering time via both OsPhyA and OsPhyB. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long days in the absence of phytochrome B

Loading next page...
 
/lp/springer_journal/osphya-modulates-rice-flowering-time-mainly-through-osgi-under-short-S9G0OXJIrV
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-016-0474-7
Publisher site
See Article on Publisher Site

Abstract

Phytochromes recognize light signals and control diverse developmental processes. In rice, all three phytochrome genes—OsphyA, OsphyB, and OsphyC—are involved in regulating flowering time. We investigated the role of OsPhyA by comparing the osphyA osphyB double mutant to an osphyB single mutant. Plants of the double mutant flowered later than the single under short days (SD) but bolted earlier under long days (LD). Under SD, this delayed-flowering phenotype was primarily due to the decreased expression of Oryza sativa GIGANTEA (OsGI), which controls three flowering activators: Heading date 1 (Hd1), OsMADS51, and Oryza sativa Indeterminate 1 (OsId1). Under LD, although the expression of several repressors, e.g., Hd1, Oryza sativa CONSTANS-like 4 (OsCOL4), and AP2 genes, was affected in the double mutant, that of Grain number, plant height and heading date 7 (Ghd7) was the most significantly reduced. These results indicated that OsPhyA influences flowering time mainly by affecting the expression of OsGI under SD and Ghd7 under LD when phytochrome B is absent. We also demonstrated that far-red light delays flowering time via both OsPhyA and OsPhyB.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 2, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off