OSNR model to consider physical layer impairments in transparent optical networks

OSNR model to consider physical layer impairments in transparent optical networks We propose a model that considers several physical impairments in all-optical networks based on optical signal-to-noise degradation. Our model considers the gain saturation effect and amplified spontaneous emission depletion in optical amplifiers, coherent crosstalk in optical switches, and four-wave mixing in transmission fibers. We apply our model to investigate the impact of different physical impairments on the performance of all-optical networks. The simulation results show the impact of each impairment on network performance in terms of blocking probability as a function of device parameters. We also apply the model as a metric for impairment-constraint routing in all-optical networks. We show that our proposed routing and wavelength assignment algorithm outperforms two common approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

OSNR model to consider physical layer impairments in transparent optical networks

Loading next page...
 
/lp/springer_journal/osnr-model-to-consider-physical-layer-impairments-in-transparent-iAk9VYIdF6
Publisher
Springer US
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-008-0178-2
Publisher site
See Article on Publisher Site

Abstract

We propose a model that considers several physical impairments in all-optical networks based on optical signal-to-noise degradation. Our model considers the gain saturation effect and amplified spontaneous emission depletion in optical amplifiers, coherent crosstalk in optical switches, and four-wave mixing in transmission fibers. We apply our model to investigate the impact of different physical impairments on the performance of all-optical networks. The simulation results show the impact of each impairment on network performance in terms of blocking probability as a function of device parameters. We also apply the model as a metric for impairment-constraint routing in all-optical networks. We show that our proposed routing and wavelength assignment algorithm outperforms two common approaches.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Sep 21, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off