Osmotic Stimulation of the Na+/H+ Exchanger NHE1: Relationship to the Activation of Three MAPK Pathways

Osmotic Stimulation of the Na+/H+ Exchanger NHE1: Relationship to the Activation of Three MAPK... The Na+/H+ exchanger (NHE) becomes activated by hyperosmolar stress, thereby contributing to cell volume regulation. The signaling pathway(s) responsible for the shrinkage-induced activation of NHE, however, remain unknown. A family of mitogen-activated protein kinases (MAPK), encompassing p42/p44 Erk, p38 MAPK and SAPK, has been implicated in a variety of cellular responses to changes in osmolarity. We therefore investigated whether these kinases similarly signal the hyperosmotic activation of NHE. The time course and osmolyte concentration dependence of hypertonic activation of NHE and of the three sub-families of MAPK were compared in U937 cells. The temporal course and dependence on osmolarity of Erk and p38 MAPK activation were found to be similar to that of NHE stimulation. However, while pretreatment of U937 cells with the kinase inhibitors PD98059 and SB203580 abrogated the osmotic activation of Erk and p38 MAPK, respectively, it did not prevent the associated stimulation of NHE. Thus, Erk1/2 and/or p38 MAPK are unlikely to mediate the osmotic regulation of NHE. The kinetics of NHE activation by hyperosmolarity appeared to precede SAPK activation. In addition, hyperosmotic activation of NHE persisted in mouse embryonic fibroblasts lacking SEK1/MKK4, an upstream activator of SAPK. Moreover, shrinkage-induced activation of NHE still occurred in COS-7 cells that were transiently transfected with a dominant-negative form of SEK1/MKK4 (SEK1/MKK4-A/L) that is expected to inhibit other isoforms of SEK as well. Together, these results demonstrate that the stimulation of NHE and the activation of Erk, p38 MAPK and SAPK are parallel but independent events. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Osmotic Stimulation of the Na+/H+ Exchanger NHE1: Relationship to the Activation of Three MAPK Pathways

Loading next page...
 
/lp/springer_journal/osmotic-stimulation-of-the-na-h-exchanger-nhe1-relationship-to-the-2wwCSKW660
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2001 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-001-0023-3
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial