OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil

OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil Iron (Fe) deficiency, a worldwide agricultural problem on calcareous soil with low Fe availability, is also a major human nutritional deficit. Plants induce Fe acquisition systems under conditions of low Fe availability. Previously, we reported that an Fe-deficiency-inducible basic helix-loop-helix (bHLH) transcription factor, OsIRO2, is responsible for regulation of the genes involved in Fe homeostasis in rice. Using promoter-GUS transformants, we showed that OsIRO2 is expressed throughout a plant’s lifetime in a spatially and temporally similar manner to the genes OsNAS1, OsNAS2 and TOM1, which is involved in Fe absorption and translocation. During germination, OsIRO2 expression was detected in embryos. OsIRO2 expression in vegetative tissues was restricted almost exclusively to vascular bundles of roots and leaves, and to the root exodermis under Fe-sufficient conditions, and expanded to all tissues of roots and leaves in response to Fe deficiency. OsIRO2 expression was also detected in flowers and developing seeds. Plants overexpressing OsIRO2 grew better, and OsIRO2-repressed plants showed poor growth compared to non-transformant rice after germination. OsIRO2 overexpression also resulted in improved tolerance to low Fe availability in calcareous soil. In addition to increased Fe content in shoots, the overexpression plants accumulated higher amounts of Fe in seeds than non-transformants when grown on calcareous soil. These results suggest that OsIRO2 is synchronously expressed with genes involved in Fe homeostasis, and performs a crucial function in regulation not only of Fe uptake from soil but also Fe transport during germination and Fe translocation to grain during seed maturation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil

Loading next page...
 
/lp/springer_journal/osiro2-is-responsible-for-iron-utilization-in-rice-and-improves-growth-YNauGI02ky
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Sciences ; Plant Pathology; Biochemistry, general
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9752-6
Publisher site
See Article on Publisher Site

Abstract

Iron (Fe) deficiency, a worldwide agricultural problem on calcareous soil with low Fe availability, is also a major human nutritional deficit. Plants induce Fe acquisition systems under conditions of low Fe availability. Previously, we reported that an Fe-deficiency-inducible basic helix-loop-helix (bHLH) transcription factor, OsIRO2, is responsible for regulation of the genes involved in Fe homeostasis in rice. Using promoter-GUS transformants, we showed that OsIRO2 is expressed throughout a plant’s lifetime in a spatially and temporally similar manner to the genes OsNAS1, OsNAS2 and TOM1, which is involved in Fe absorption and translocation. During germination, OsIRO2 expression was detected in embryos. OsIRO2 expression in vegetative tissues was restricted almost exclusively to vascular bundles of roots and leaves, and to the root exodermis under Fe-sufficient conditions, and expanded to all tissues of roots and leaves in response to Fe deficiency. OsIRO2 expression was also detected in flowers and developing seeds. Plants overexpressing OsIRO2 grew better, and OsIRO2-repressed plants showed poor growth compared to non-transformant rice after germination. OsIRO2 overexpression also resulted in improved tolerance to low Fe availability in calcareous soil. In addition to increased Fe content in shoots, the overexpression plants accumulated higher amounts of Fe in seeds than non-transformants when grown on calcareous soil. These results suggest that OsIRO2 is synchronously expressed with genes involved in Fe homeostasis, and performs a crucial function in regulation not only of Fe uptake from soil but also Fe transport during germination and Fe translocation to grain during seed maturation.

Journal

Plant Molecular BiologySpringer Journals

Published: Feb 18, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off