Oscillometric–gravimetric measurements of pure gas adsorption equilibria without the non-adsorption of helium hypothesis

Oscillometric–gravimetric measurements of pure gas adsorption equilibria without the... The adsorption of gaseous carbon dioxide (CO2) at near ambient conditions (297 K, 995 mbar) on activated carbon BAX 1100 (Ingevity), has been measured by a new oscillometric-gravimetric method. The method consists of combined gravimetric and dynamic measurements, namely observations of the frequency of small and nearly adiabatic oscillations of the sorptive gas being in equilibrium with the adsorbed phase of adsorbate. The oscillations observed are actually eigenoscillations of a sorptive gas–sorbate–sorbent system. They are initiated by small oscillations of a sphere or a cylinder positioned in a vertical tube above the vessel containing the gas and the sorbent material reversion of experiment by Rüchardt (Phys. Zeitschr XXX:58, 1929)–Flammersfeld (Z. Naturforsch. 23a:3, 1972). Experiments show that the adsorbate includes two different phases consisting respectively of molecules which are only weakly bound to sorbent’s atoms so that they can participate in the low frequency gas oscillations (<10 Hz), and other molecules being strongly bound to sorbent’s atoms so they are “stiff”, i.e. cannot participate in the gas oscillations, eigenfrequencies being in the range of (1010–1012) Hz. The theory of these measurements is outlined and data of adsorption equilibria of carbon dioxide gas on activated carbon BAX 1100 at near ambient conditions which have been measured by three different methods are presented and compared to each other. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Adsorption Springer Journals

Oscillometric–gravimetric measurements of pure gas adsorption equilibria without the non-adsorption of helium hypothesis

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media, LLC
Chemistry; Industrial Chemistry/Chemical Engineering; Surfaces and Interfaces, Thin Films; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial